Kavokine Nikita, Müller Markus, Georges Antoine, Parcollet Olivier
Center for Computational Quantum Physics, <a href="https://ror.org/00sekdz59">Flatiron Institute</a>, 162 5th Avenue, New York, New York 10010, USA.
Department of Molecular Spectroscopy, <a href="https://ror.org/00sb7hc59">Max Planck Institute for Polymer Research</a>, Ackermannweg 10, 55128 Mainz, Germany.
Phys Rev Lett. 2024 Jul 5;133(1):016501. doi: 10.1103/PhysRevLett.133.016501.
We present the mean field solution of the quantum and classical Heisenberg spin glasses, using the combination of a high precision numerical solution of the Parisi full replica symmetry breaking equations and a continuous time quantum Monte Carlo algorithm. We characterize the spin glass order and its low-energy excitations down to zero temperature. The Heisenberg spin glass has a rougher energy landscape than its Ising analog, and exhibits a very slow temperature evolution of its dynamical properties. We extend our analysis to the doped, metallic Heisenberg spin glass, which displays unexpectedly slow spin dynamics, reflecting the proximity to the melting quantum critical point and its associated Sachdev-Ye-Kitaev Planckian dynamics.
我们使用帕里西完全复制对称破缺方程的高精度数值解与连续时间量子蒙特卡罗算法相结合的方法,给出了量子和经典海森堡自旋玻璃的平均场解。我们刻画了自旋玻璃序及其低能激发直至零温度。海森堡自旋玻璃的能量景观比其伊辛类似物更粗糙,并且其动力学性质随温度的演化非常缓慢。我们将分析扩展到掺杂的金属海森堡自旋玻璃,它表现出出乎意料的缓慢自旋动力学,这反映了其接近熔化量子临界点及其相关的萨赫德夫 - 叶 - 基塔耶夫普朗克动力学。