Suppr超能文献

利用机器学习进行机构间可推广性的肺癌预后预测:多中心队列研究(WJOG15121L:REAL-WIND)。

Prediction of prognosis in lung cancer using machine learning with inter-institutional generalizability: A multicenter cohort study (WJOG15121L: REAL-WIND).

机构信息

Internal Medicine III, Wakayama Medical University, Wakayama, Japan.

Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan.

出版信息

Lung Cancer. 2024 Aug;194:107896. doi: 10.1016/j.lungcan.2024.107896. Epub 2024 Jul 18.

Abstract

OBJECTIVES

Predicting the prognosis of lung cancer is crucial for providing optimal medical care. However, a method to accurately predict the overall prognosis in patients with stage IV lung cancer, even with the use of machine learning, has not been established. Moreover, the inter-institutional generalizability of such algorithms remains unexplored. This study aimed to establish machine learning-based algorithms with inter-institutional generalizability to predict prognosis.

MATERIALS AND METHODS

This multicenter, retrospective, hospital-based cohort study included consecutive patients with stage IV lung cancer who were randomly categorized into the training and independent test cohorts with a 2:1 ratio, respectively. The primary metric to assess algorithm performance was the area under the receiver operating characteristic curve in the independent test cohort. To assess the inter-institutional generalizability of the algorithms, we investigated their ability to predict patient outcomes in the remaining facility after being trained using data from 15 other facilities.

RESULTS

Overall, 6,751 patients (median age, 70 years) were enrolled, and 1,515 (22 %) showed mutated epidermal growth factor receptor expression. The median overall survival was 16.6 (95 % confidence interval, 15.9-17.5) months. Algorithm performance metrics in the test cohort showed that the areas under the curves were 0.90 (95 % confidence interval, 0.88-0.91), 0.85 (0.84-0.87), 0.83 (0.81-0.85), and 0.85 (0.82-0.87) at 180, 360, 720, and 1,080 predicted survival days, respectively. The performance test of 16 algorithms for investigating inter-institutional generalizability showed median areas under the curves of 0.87 (range, 0.84-0.92), 0.84 (0.78-0.88), 0.84 (0.76-0.89), and 0.84 (0.75-0.90) at 180, 360, 720, and 1,080 days, respectively.

CONCLUSION

This study developed machine learning algorithms that could accurately predict the prognosis in patients with stage IV lung cancer with high inter-institutional generalizability. This can enhance the accuracy of prognosis prediction and support informed and shared decision-making in clinical settings.

摘要

目的

预测肺癌的预后对于提供最佳医疗至关重要。然而,即使使用机器学习,也尚未建立一种能够准确预测 IV 期肺癌患者总体预后的方法。此外,这些算法在机构间的通用性仍有待探索。本研究旨在建立具有机构间通用性的基于机器学习的算法来预测预后。

材料与方法

这是一项多中心、回顾性、基于医院的队列研究,纳入了连续的 IV 期肺癌患者,这些患者按 2:1 的比例随机分为训练队列和独立测试队列。评估算法性能的主要指标是独立测试队列中接受者操作特征曲线下的面积。为了评估算法的机构间通用性,我们研究了在使用来自 15 个其他机构的数据进行训练后,这些算法在剩余机构中预测患者结局的能力。

结果

共有 6751 名患者(中位年龄 70 岁)入组,其中 1515 名(22%)表达突变型表皮生长因子受体。中位总生存期为 16.6 个月(95%置信区间,15.9-17.5)。测试队列中的算法性能指标显示,曲线下面积分别为 0.90(95%置信区间,0.88-0.91)、0.85(0.84-0.87)、0.83(0.81-0.85)和 0.85(0.82-0.87),在预测生存 180、360、720 和 1080 天时。对 16 种算法进行机构间通用性检验的性能测试显示,中位数曲线下面积分别为 0.87(范围,0.84-0.92)、0.84(0.78-0.88)、0.84(0.76-0.89)和 0.84(0.75-0.90),在预测生存 180、360、720 和 1080 天时。

结论

本研究开发了能够准确预测 IV 期肺癌患者预后的机器学习算法,具有较高的机构间通用性。这可以提高预后预测的准确性,并在临床环境中支持知情和共享决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验