School of Medical Informatics, China Medical University, Shenyang, Liaoning, China.
Department of Radiology, School of Medicine Stanford University, Stanford, California.
JAMA Netw Open. 2020 Dec 1;3(12):e2030442. doi: 10.1001/jamanetworkopen.2020.30442.
IMPORTANCE: An end-to-end efficacy evaluation approach for identifying progression risk after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy in patients with stage IV EGFR variant-positive non-small cell lung cancer (NSCLC) is lacking. OBJECTIVE: To propose a clinically applicable large-scale bidirectional generative adversarial network for predicting the efficacy of EGFR-TKI therapy in patients with NSCLC. DESIGN, SETTING, AND PARTICIPANTS: This diagnostic/prognostic study enrolled 465 patients from January 1, 2010, to August 1, 2017, with follow-up from February 1, 2010, to June 1, 2020. A deep learning (DL) semantic signature to predict progression-free survival (PFS) was constructed in the training cohort, validated in 2 external validation and 2 control cohorts, and compared with the radiomics signature. EXPOSURES: An end-to-end bidirectional generative adversarial network framework was designed to predict the progression risk in patients with NSCLC. MAIN OUTCOMES AND MEASURES: The primary end point was PFS, considering the time from the initiation of therapy to the date of recurrence, confirmed disease progression, or death. RESULTS: A total of 342 patients with stage IV EGFR variant-positive NSCLC receiving EGFR-TKI therapy met the inclusion criteria. Of these, 145 patients from 2 of the hospitals (n = 117 and 28) formed a training cohort (mean [SD] age, 61 [11] years; 87 [60.0%] female), and the patients from 2 other hospitals comprised 2 external validation cohorts (validation cohort 1: n = 101; mean [SD] age, 57 [12] years; 60 [59.4%] female; and validation cohort 2: n = 96, mean [SD] age, 58 [9] years; 55 [57.3%] female). Fifty-six patients with advanced-stage EGFR variant-positive NSCLC (mean [SD] age, 52 [11] years; 26 [46.4%] female) and 67 patients with advanced-stage EGFR wild-type NSCLC (mean [SD] age, 54 [10] years; 10 [15.0%] female) who received first-line chemotherapy were included. A total of 90 (26%) receiving EGFR-TKI therapy with a high risk of rapid disease progression were identified (median [range] PFS, 7.3 [1.4-32.0] months in the training cohort, 5.0 [0.6-34.6] months in validation cohort 1, and 6.4 [1.8-20.1] months, in validation cohort 2) using the DL semantic signature.The PFS decreased by 36% (hazard ratio, 2.13; 95% CI, 1.30-3.49; P < .001) compared with that in other patients (median [range] PFS, 11.5 [1.5-64.2] months in the training cohort, 10.9 [1.1-50.5] in validation cohort 1, and 8.9 [0.8-40.6] months in validation cohort 2. No significant differences were observed when comparing the PFS of high-risk patients receiving EGFR-TKI therapy with the chemotherapy cohorts (median PFS, 6.9 vs 4.4 months; P = .08). In terms of predicting the tumor progression risk after EGFR-TKI therapy, clinical decisions based on the DL semantic signature led to better survival outcomes than those based on radiomics signature across all risk probabilities by the decision curve analysis. CONCLUSIONS AND RELEVANCE: This diagnostic/prognostic study provides a clinically applicable approach for identifying patients with stage IV EGFR variant-positive NSCLC who are not likely to benefit from EGFR-TKI therapy. The end-to-end DL-derived semantic features eliminated all manual interventions required while using previous radiomics methods and have a better prognostic performance.
重要性:在接受表皮生长因子受体(EGFR)-酪氨酸激酶抑制剂(TKI)治疗的 IV 期 EGFR 变异阳性非小细胞肺癌(NSCLC)患者中,缺乏一种端到端的疗效评估方法来识别进展风险。
目的:提出一种临床适用的大规模双向生成对抗网络,用于预测 NSCLC 患者接受 EGFR-TKI 治疗的疗效。
设计、设置和参与者:这项诊断/预后研究纳入了 2010 年 1 月 1 日至 2017 年 8 月 1 日的 465 名患者,随访时间为 2010 年 2 月 1 日至 2020 年 6 月 1 日。在训练队列中构建了一种深度学习(DL)语义特征来预测无进展生存期(PFS),在 2 个外部验证队列和 2 个对照队列中进行了验证,并与放射组学特征进行了比较。
暴露:设计了一种端到端的双向生成对抗网络框架来预测 NSCLC 患者的进展风险。
主要结果和措施:主要终点是 PFS,考虑从治疗开始到疾病复发、确认疾病进展或死亡的时间。
结果:共有 342 名接受 EGFR-TKI 治疗的 IV 期 EGFR 变异阳性 NSCLC 患者符合纳入标准。其中,来自 2 家医院的 145 名患者(n=117 和 28)组成了一个训练队列(平均[标准差]年龄,61[11]岁;87[60.0%]女性),另外 2 家医院的患者组成了 2 个外部验证队列(验证队列 1:n=101;平均[标准差]年龄,57[12]岁;60[59.4%]女性;验证队列 2:n=96,平均[标准差]年龄,58[9]岁;55[57.3%]女性)。56 名晚期 EGFR 变异阳性 NSCLC 患者(平均[标准差]年龄,52[11]岁;26[46.4%]女性)和 67 名晚期 EGFR 野生型 NSCLC 患者(平均[标准差]年龄,54[10]岁;10[15.0%]女性)接受了一线化疗。总共确定了 90 名(26%)接受 EGFR-TKI 治疗且疾病快速进展风险高的患者(训练队列中中位[范围]PFS,7.3[1.4-32.0]个月,验证队列 1 中 5.0[0.6-34.6]个月,验证队列 2 中 6.4[1.8-20.1]个月),使用 DL 语义特征。与其他患者相比,PFS 下降了 36%(危险比,2.13;95%CI,1.30-3.49;P<0.001)(训练队列中中位[范围]PFS,11.5[1.5-64.2]个月,验证队列 1 中 10.9[1.1-50.5]个月,验证队列 2 中 8.9[0.8-40.6]个月)。在接受 EGFR-TKI 治疗的高危患者与化疗队列的 PFS 比较中,未观察到显著差异(中位 PFS,6.9 对 4.4 个月;P=0.08)。在预测 EGFR-TKI 治疗后肿瘤进展风险方面,基于 DL 语义特征的临床决策比基于放射组学特征的决策在所有风险概率下都能带来更好的生存结果,通过决策曲线分析得到验证。
结论和相关性:这项诊断/预后研究为识别出不太可能从 EGFR-TKI 治疗中获益的 IV 期 EGFR 变异阳性 NSCLC 患者提供了一种临床适用的方法。端到端的 DL 衍生语义特征消除了使用以前的放射组学方法所需的所有手动干预,具有更好的预后性能。
Cochrane Database Syst Rev. 2016-5-25
NPJ Precis Oncol. 2025-7-1
Eur J Nucl Med Mol Imaging. 2020-6-22
Med Image Anal. 2019-8-31
Eur J Nucl Med Mol Imaging. 2019-6-25
J Natl Compr Canc Netw. 2018-7
Nat Rev Clin Oncol. 2017-10-4