文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发和验证一种机器学习模型,以探索 IV 期 EGFR 突变阳性非小细胞肺癌患者对酪氨酸激酶抑制剂的反应。

Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant-Positive Non-Small Cell Lung Cancer.

机构信息

School of Medical Informatics, China Medical University, Shenyang, Liaoning, China.

Department of Radiology, School of Medicine Stanford University, Stanford, California.

出版信息

JAMA Netw Open. 2020 Dec 1;3(12):e2030442. doi: 10.1001/jamanetworkopen.2020.30442.


DOI:10.1001/jamanetworkopen.2020.30442
PMID:33331920
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7747022/
Abstract

IMPORTANCE: An end-to-end efficacy evaluation approach for identifying progression risk after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy in patients with stage IV EGFR variant-positive non-small cell lung cancer (NSCLC) is lacking. OBJECTIVE: To propose a clinically applicable large-scale bidirectional generative adversarial network for predicting the efficacy of EGFR-TKI therapy in patients with NSCLC. DESIGN, SETTING, AND PARTICIPANTS: This diagnostic/prognostic study enrolled 465 patients from January 1, 2010, to August 1, 2017, with follow-up from February 1, 2010, to June 1, 2020. A deep learning (DL) semantic signature to predict progression-free survival (PFS) was constructed in the training cohort, validated in 2 external validation and 2 control cohorts, and compared with the radiomics signature. EXPOSURES: An end-to-end bidirectional generative adversarial network framework was designed to predict the progression risk in patients with NSCLC. MAIN OUTCOMES AND MEASURES: The primary end point was PFS, considering the time from the initiation of therapy to the date of recurrence, confirmed disease progression, or death. RESULTS: A total of 342 patients with stage IV EGFR variant-positive NSCLC receiving EGFR-TKI therapy met the inclusion criteria. Of these, 145 patients from 2 of the hospitals (n = 117 and 28) formed a training cohort (mean [SD] age, 61 [11] years; 87 [60.0%] female), and the patients from 2 other hospitals comprised 2 external validation cohorts (validation cohort 1: n = 101; mean [SD] age, 57 [12] years; 60 [59.4%] female; and validation cohort 2: n = 96, mean [SD] age, 58 [9] years; 55 [57.3%] female). Fifty-six patients with advanced-stage EGFR variant-positive NSCLC (mean [SD] age, 52 [11] years; 26 [46.4%] female) and 67 patients with advanced-stage EGFR wild-type NSCLC (mean [SD] age, 54 [10] years; 10 [15.0%] female) who received first-line chemotherapy were included. A total of 90 (26%) receiving EGFR-TKI therapy with a high risk of rapid disease progression were identified (median [range] PFS, 7.3 [1.4-32.0] months in the training cohort, 5.0 [0.6-34.6] months in validation cohort 1, and 6.4 [1.8-20.1] months, in validation cohort 2) using the DL semantic signature.The PFS decreased by 36% (hazard ratio, 2.13; 95% CI, 1.30-3.49; P < .001) compared with that in other patients (median [range] PFS, 11.5 [1.5-64.2] months in the training cohort, 10.9 [1.1-50.5] in validation cohort 1, and 8.9 [0.8-40.6] months in validation cohort 2. No significant differences were observed when comparing the PFS of high-risk patients receiving EGFR-TKI therapy with the chemotherapy cohorts (median PFS, 6.9 vs 4.4 months; P = .08). In terms of predicting the tumor progression risk after EGFR-TKI therapy, clinical decisions based on the DL semantic signature led to better survival outcomes than those based on radiomics signature across all risk probabilities by the decision curve analysis. CONCLUSIONS AND RELEVANCE: This diagnostic/prognostic study provides a clinically applicable approach for identifying patients with stage IV EGFR variant-positive NSCLC who are not likely to benefit from EGFR-TKI therapy. The end-to-end DL-derived semantic features eliminated all manual interventions required while using previous radiomics methods and have a better prognostic performance.

摘要

重要性:在接受表皮生长因子受体(EGFR)-酪氨酸激酶抑制剂(TKI)治疗的 IV 期 EGFR 变异阳性非小细胞肺癌(NSCLC)患者中,缺乏一种端到端的疗效评估方法来识别进展风险。

目的:提出一种临床适用的大规模双向生成对抗网络,用于预测 NSCLC 患者接受 EGFR-TKI 治疗的疗效。

设计、设置和参与者:这项诊断/预后研究纳入了 2010 年 1 月 1 日至 2017 年 8 月 1 日的 465 名患者,随访时间为 2010 年 2 月 1 日至 2020 年 6 月 1 日。在训练队列中构建了一种深度学习(DL)语义特征来预测无进展生存期(PFS),在 2 个外部验证队列和 2 个对照队列中进行了验证,并与放射组学特征进行了比较。

暴露:设计了一种端到端的双向生成对抗网络框架来预测 NSCLC 患者的进展风险。

主要结果和措施:主要终点是 PFS,考虑从治疗开始到疾病复发、确认疾病进展或死亡的时间。

结果:共有 342 名接受 EGFR-TKI 治疗的 IV 期 EGFR 变异阳性 NSCLC 患者符合纳入标准。其中,来自 2 家医院的 145 名患者(n=117 和 28)组成了一个训练队列(平均[标准差]年龄,61[11]岁;87[60.0%]女性),另外 2 家医院的患者组成了 2 个外部验证队列(验证队列 1:n=101;平均[标准差]年龄,57[12]岁;60[59.4%]女性;验证队列 2:n=96,平均[标准差]年龄,58[9]岁;55[57.3%]女性)。56 名晚期 EGFR 变异阳性 NSCLC 患者(平均[标准差]年龄,52[11]岁;26[46.4%]女性)和 67 名晚期 EGFR 野生型 NSCLC 患者(平均[标准差]年龄,54[10]岁;10[15.0%]女性)接受了一线化疗。总共确定了 90 名(26%)接受 EGFR-TKI 治疗且疾病快速进展风险高的患者(训练队列中中位[范围]PFS,7.3[1.4-32.0]个月,验证队列 1 中 5.0[0.6-34.6]个月,验证队列 2 中 6.4[1.8-20.1]个月),使用 DL 语义特征。与其他患者相比,PFS 下降了 36%(危险比,2.13;95%CI,1.30-3.49;P<0.001)(训练队列中中位[范围]PFS,11.5[1.5-64.2]个月,验证队列 1 中 10.9[1.1-50.5]个月,验证队列 2 中 8.9[0.8-40.6]个月)。在接受 EGFR-TKI 治疗的高危患者与化疗队列的 PFS 比较中,未观察到显著差异(中位 PFS,6.9 对 4.4 个月;P=0.08)。在预测 EGFR-TKI 治疗后肿瘤进展风险方面,基于 DL 语义特征的临床决策比基于放射组学特征的决策在所有风险概率下都能带来更好的生存结果,通过决策曲线分析得到验证。

结论和相关性:这项诊断/预后研究为识别出不太可能从 EGFR-TKI 治疗中获益的 IV 期 EGFR 变异阳性 NSCLC 患者提供了一种临床适用的方法。端到端的 DL 衍生语义特征消除了使用以前的放射组学方法所需的所有手动干预,具有更好的预后性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/00c8646edca3/jamanetwopen-e2030442-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/a7974ebb0e87/jamanetwopen-e2030442-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/a4fca0e141fa/jamanetwopen-e2030442-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/7ffd9444e4fc/jamanetwopen-e2030442-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/00c8646edca3/jamanetwopen-e2030442-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/a7974ebb0e87/jamanetwopen-e2030442-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/a4fca0e141fa/jamanetwopen-e2030442-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/7ffd9444e4fc/jamanetwopen-e2030442-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9815/7747022/00c8646edca3/jamanetwopen-e2030442-g004.jpg

相似文献

[1]
Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant-Positive Non-Small Cell Lung Cancer.

JAMA Netw Open. 2020-12-1

[2]
Efficacy of first-line treatment with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) alone or in combination with chemotherapy for advanced non-small cell lung cancer (NSCLC) with low-abundance mutation.

Lung Cancer. 2018-12-6

[3]
The association between clinical prognostic factors and epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) efficacy in advanced non-small-cell lung cancer patients: a retrospective assessment of 94 cases with EGFR mutations.

Oncotarget. 2017-1-10

[4]
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer.

Cochrane Database Syst Rev. 2016-5-25

[5]
Cancer-elicited inflammation attenuates response and outcome in tyrosine kinase inhibitor naive patients with advanced NSCLC.

Pharmacol Res. 2021-8

[6]
Concurrent EGFR-TKI and Thoracic Radiotherapy as First-Line Treatment for Stage IV Non-Small Cell Lung Cancer Harboring EGFR Active Mutations.

Oncologist. 2019-4-30

[7]
Post-Progression Survival after EGFR-TKI for Advanced Non-Small Cell Lung Cancer Harboring EGFR Mutations.

PLoS One. 2015-8-11

[8]
A radiomics-based deep learning approach to predict progression free-survival after tyrosine kinase inhibitor therapy in non-small cell lung cancer.

Cancer Imaging. 2023-1-20

[9]
Bayesian network meta-comparison of maintenance treatments for stage IIIb/IV non-small-cell lung cancer (NSCLC) patients with good performance status not progressing after first-line induction chemotherapy: results by performance status, EGFR mutation, histology and response to previous induction.

Eur J Cancer. 2015-9-10

[10]
[Efficacy of salvage chemotherapy in the advanced non-small cell lung cancer patients who failed the treatment of chemotherapy and EGFR-TKI].

Zhonghua Zhong Liu Za Zhi. 2010-11

引用本文的文献

[1]
Multimodal prediction of tyrosine kinase inhibitors therapy outcomes in advanced EGFR-mutated NSCLC patients.

J Transl Med. 2025-8-18

[2]
Radiomics based on MRI and F-FDG PET/CT predicts response to EGFR-TKI therapy based on primary NSCLC and brain metastasis.

Neurooncol Adv. 2025-5-30

[3]
Non-invasive identification of TKI-resistant NSCLC: a multi-model AI approach for predicting EGFR/TP53 co-mutations.

BMC Pulm Med. 2025-7-10

[4]
Progress and challenges of artificial intelligence in lung cancer clinical translation.

NPJ Precis Oncol. 2025-7-1

[5]
FLAIR-based radiomics signature from brain-tumor interface for early prediction of response to EGFR-TKI therapy in NSCLC patients with brain metastasis.

Front Cell Dev Biol. 2025-5-14

[6]
Progression-Free Survival Prediction Model Based on AI-Enhanced Dynamic Radiomics for Personalized EGFR-TKI Treatment Monitoring Patients With Lung Adenocarcinoma.

Thorac Cancer. 2025-3

[7]
Artificial intelligence-based personalized survival prediction using clinical and radiomics features in patients with advanced non-small cell lung cancer.

BMC Cancer. 2024-11-18

[8]
Comprehensive analysis of POLH-AS1 as a prognostic biomarker in hepatocellular carcinoma.

BMC Cancer. 2024-9-6

[9]
Development and validation of a deep learning-based model to predict response and survival of T790M mutant non-small cell lung cancer patients in early clinical phase trials using electronic medical record and pharmacokinetic data.

Transl Lung Cancer Res. 2024-4-29

[10]
EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC.

J Imaging Inform Med. 2024-6

本文引用的文献

[1]
End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT.

Eur J Nucl Med Mol Imaging. 2020-6-22

[2]
CT-Based Radiomic Signature as a Prognostic Factor in Stage IV -Positive Non-small-cell Lung Cancer Treated With TKI Crizotinib: A Proof-of-Concept Study.

Front Oncol. 2020-2-18

[3]
Generative adversarial network in medical imaging: A review.

Med Image Anal. 2019-8-31

[4]
Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis.

Eur J Nucl Med Mol Imaging. 2019-6-25

[5]
Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning.

Cancer Med. 2019-5-10

[6]
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.

Nat Med. 2018-9-17

[7]
NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 5.2018.

J Natl Compr Canc Netw. 2018-7

[8]
A New Approach to Predict Progression-free Survival in Stage IV EGFR-mutant NSCLC Patients with EGFR-TKI Therapy.

Clin Cancer Res. 2018-3-21

[9]
Radiomics: the bridge between medical imaging and personalized medicine.

Nat Rev Clin Oncol. 2017-10-4

[10]
Osimertinib benefit in EGFR-mutant NSCLC patients with T790M-mutation detected by circulating tumour DNA.

Ann Oncol. 2017-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索