Suppr超能文献

深度学习用于预测下颌阻生第三磨牙拔除难度等级

Deep Learning for Predicting the Difficulty Level of Removing the Impacted Mandibular Third Molar.

作者信息

Trachoo Vorapat, Taetragool Unchalisa, Pianchoopat Ploypapas, Sukitporn-Udom Chatchapon, Morakrant Narapathra, Warin Kritsasith

机构信息

Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.

Department of Computer Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

出版信息

Int Dent J. 2025 Feb;75(1):144-150. doi: 10.1016/j.identj.2024.06.021. Epub 2024 Jul 22.

Abstract

BACKGROUND

Preoperative assessment of the impacted mandibular third molar (LM3) in a panoramic radiograph is important in surgical planning. The aim of this study was to develop and evaluate a computer-aided visualisation-based deep learning (DL) system using a panoramic radiograph to predict the difficulty level of surgical removal of an impacted LM3.

METHODS

The study included 1367 LM3 images from 784 patients who presented from 2021-2023 to the University Dental Hospital; images were collected retrospectively. The difficulty level of surgically removing impacted LM3s was assessed via our newly developed DL system, which seamlessly integrated 3 distinct DL models. ResNet101V2 handled binary classification for identifying impacted LM3s in panoramic radiographs, RetinaNet detected the precise location of the impacted LM3, and Vision Transformer performed multiclass image classification to evaluate the difficulty levels of removing the detected impacted LM3.

RESULTS

The ResNet101V2 model achieved a classification accuracy of 0.8671. The RetinaNet model demonstrated exceptional detection performance, with a mean average precision of 0.9928. Additionally, the Vision Transformer model delivered an average accuracy of 0.7899 in predicting removal difficulty levels.

CONCLUSIONS

The development of a 3-phase computer-aided visualisation-based DL system has yielded a very good performance in using panoramic radiographs to predict the difficulty level of surgically removing an impacted LM3.

摘要

背景

全景X线片中对下颌阻生第三磨牙(LM3)进行术前评估对手术规划很重要。本研究的目的是开发并评估一种基于计算机辅助可视化的深度学习(DL)系统,该系统使用全景X线片来预测拔除下颌阻生第三磨牙手术的难度水平。

方法

本研究纳入了2021年至2023年到大学牙科医院就诊的784例患者的1367张LM3图像;图像为回顾性收集。通过我们新开发的DL系统评估拔除下颌阻生第三磨牙手术的难度水平,该系统无缝集成了3种不同的DL模型。ResNet101V2处理二分类以识别全景X线片中的下颌阻生第三磨牙,RetinaNet检测下颌阻生第三磨牙的精确位置,视觉Transformer进行多分类图像分类以评估拔除检测到的下颌阻生第三磨牙的难度水平。

结果

ResNet101V2模型的分类准确率为0.8671。RetinaNet模型表现出卓越的检测性能,平均精度均值为0.9928。此外,视觉Transformer模型在预测拔除难度水平方面的平均准确率为0.7899。

结论

基于计算机辅助可视化的三阶段DL系统的开发在使用全景X线片预测拔除下颌阻生第三磨牙手术的难度水平方面表现出非常好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c6a/11806308/ea59b8be777c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验