Suppr超能文献

评估深度卷积神经网络模型在全景影像中下颌骨骨折检测的应用。

Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs.

机构信息

Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.

College of Interdisciplinary Studies, Thammasat University, Pathum Thani, Thailand.

出版信息

Int J Oral Maxillofac Surg. 2022 Nov;51(11):1488-1494. doi: 10.1016/j.ijom.2022.03.056. Epub 2022 Apr 6.

Abstract

The aim of this study was to develop automated models for the identification and detection of mandibular fractures in panoramic radiographs using convolutional neural network (CNN) algorithms. A total of 1710 panoramic radiograph images from the years 2016 to 2020, including 855 images containing mandibular fractures, were obtained retrospectively from the regional trauma centre. CNN-based classification models, DenseNet-169 and ResNet-50, were fabricated to identify fractures in the radiographic images. The CNN-based object detection models Faster R-CNN and YOLOv5 were trained to automate the placement of the bounding boxes to detect fractures in the radiographic images. The performance of the models was evaluated on a hold-out test set and also by comparison with residents in oral and maxillofacial surgery and oral and maxillofacial surgeons (experts) on a 100-image subset. The binary classification performance of the models achieved promising results with an area under the receiver operating characteristics curve (AUC), sensitivity, and specificity of 100%. The detection performance of the models achieved an AUC of approximately 90%. When compared with the accuracy of clinician observers, the identification performance of the models outperformed even an expert-level classification. In conclusion, CNN-based models identified mandibular fractures above expert-level performance. It is expected that these models will be used as an aid to improve clinician performance, with aided resident performance approximating that of expert level.

摘要

本研究旨在开发使用卷积神经网络 (CNN) 算法自动识别和检测全景片下颌骨骨折的模型。从区域创伤中心回顾性获得了 2016 年至 2020 年的 1710 张全景片图像,其中 855 张包含下颌骨骨折。基于 CNN 的分类模型,DenseNet-169 和 ResNet-50,被用于识别影像学图像中的骨折。基于 CNN 的目标检测模型 Faster R-CNN 和 YOLOv5 被训练用于自动放置边界框以检测影像学图像中的骨折。模型的性能在留一测试集上进行评估,并与颌面外科和口腔颌面外科住院医师(专家)在 100 张图像子集上进行比较。模型的二分类性能表现出色,接收器操作特征曲线下的面积(AUC)、敏感性和特异性均为 100%。模型的检测性能达到了约 90%的 AUC。与临床医生观察者的准确性相比,模型的识别性能甚至超过了专家级别的分类。总之,基于 CNN 的模型在识别下颌骨骨折方面表现优于专家水平。预计这些模型将被用作提高临床医生表现的辅助工具,辅助住院医生的表现接近专家水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验