University Hospital Ostrava, Clinic of Ophthalmology, Ostrava, 708 52, Czech Republic.
University of Ostrava, Faculty of Medicine, Department of Craniofacial Surgery, Ostrava, 703 00, Czech Republic.
Sci Data. 2024 Jul 23;11(1):814. doi: 10.1038/s41597-024-03409-7.
Retinopathy of prematurity (ROP) represents a vasoproliferative disease, especially in newborns and infants, which can potentially affect and damage the vision. Despite recent advances in neonatal care and medical guidelines, ROP still remains one of the leading causes of worldwide childhood blindness. The paper presents a unique dataset of 6,004 retinal images of 188 newborns, most of whom are premature infants. The dataset is accompanied by the anonymized patients' information from the ROP screening acquired at the University Hospital Ostrava, Czech Republic. Three digital retinal imaging camera systems are used in the study: Clarity RetCam 3, Natus RetCam Envision, and Phoenix ICON. The study is enriched by the software tool ReLeSeT which is aimed at automatic retinal lesion segmentation and extraction from retinal images. Consequently, this tool enables computing geometric and intensity features of retinal lesions. Also, we publish a set of pre-processing tools for feature boosting of retinal lesions and retinal blood vessels for building classification and segmentation models in ROP analysis.
早产儿视网膜病变(ROP)是一种血管增生性疾病,尤其在新生儿和婴儿中较为常见,可能会影响和损害视力。尽管新生儿护理和医疗指南最近取得了进展,但 ROP 仍然是全球儿童失明的主要原因之一。本文提供了一个独特的数据集,其中包含了 188 名新生儿的 6004 张视网膜图像,其中大多数是早产儿。该数据集附有捷克奥斯特拉发大学医院进行的 ROP 筛查中获得的匿名患者信息。该研究使用了三种数字视网膜成像相机系统:Clarity RetCam 3、Natus RetCam Envision 和 Phoenix ICON。研究还利用了 ReLeSeT 软件工具,该工具旨在自动从视网膜图像中分割和提取视网膜病变。因此,该工具可以计算视网膜病变的几何和强度特征。此外,我们还发布了一组预处理工具,用于增强视网膜病变和视网膜血管的特征,以构建 ROP 分析中的分类和分割模型。