Ibrahim Tanimu Kogi, Yawas Danjuma Saleh, Thaddaeus Julius, Danasabe Bashar, Iliyasu Ibrahim, Adebisi Adetayo Abdulmumin, Ahmadu Talib Onimisi
Mechanical Engineering Department, Faculty of Engineering, Federal University Wukari, Wukari, Nigeria.
Mechanical Engineering Department, Ahmadu Bello University, Zaria, Nigeria.
Sci Rep. 2024 Jul 23;14(1):16999. doi: 10.1038/s41598-024-67476-x.
This study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration). Regression analysis was employed to develop a predictive mathematical model for the tensile strength of the hybrid composites and to assess the significance of process parameters. The optimized composite achieved a predicted tensile strength of 186.81 MPa and an experimental strength of 190.67 MPa using 7.5 vol% brown pumice, 2.5 vol% coal ash, a pouring temperature of 700 °C, stirrer speed of 500 rpm, and stirring duration of 10 min. This represents a 52.23% improvement over the as-cast aluminum alloy's tensile strength. Characterization results revealed that brown pumice and coal ash contain robust minerals (SiO, FeO, AlO) suitable for reinforcing metal matrices like aluminum, titanium, and magnesium. Thermogravimetric and differential thermal analyses demonstrated thermal stability up to 614.01 °C for the optimized composite, making it suitable for brake disc applications.
本研究聚焦于优化双搅拌铸造工艺参数,以提高用于制动盘应用的由铝合金、棕色浮石和粉煤灰组成的混杂复合材料的拉伸强度。采用了包括X射线荧光分析、X射线衍射分析、热重分析和扫描电子显微镜在内的分析技术来表征复合材料成分。田口方法用于实验设计和优化,以确定棕色浮石和粉煤灰的最佳重量组成以及搅拌铸造参数(搅拌器速度、浇注温度和搅拌持续时间)。采用回归分析建立混杂复合材料拉伸强度的预测数学模型,并评估工艺参数的显著性。使用7.5体积%的棕色浮石、2.5体积%的粉煤灰、700℃的浇注温度、500转/分钟的搅拌器速度和10分钟的搅拌持续时间,优化后的复合材料预测拉伸强度为186.81MPa,实验强度为190.67MPa。这比铸态铝合金的拉伸强度提高了52.23%。表征结果表明,棕色浮石和粉煤灰含有适合增强铝、钛和镁等金属基体的坚固矿物(SiO、FeO、AlO)。热重分析和差示热分析表明,优化后的复合材料在高达614.01℃时具有热稳定性,使其适用于制动盘应用。