Suppr超能文献

阈下抑郁个体的静息态和动态功能网络连接改变:一项大规模静息态功能磁共振成像研究

Altered static and dynamic functional network connectivity in individuals with subthreshold depression: a large-scale resting-state fMRI study.

作者信息

Liao Dan, Liang Li-Song, Wang Di, Li Xiao-Hai, Liu Yuan-Cheng, Guo Zhi-Peng, Zhang Zhu-Qing, Liu Xin-Feng

机构信息

Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.

出版信息

Eur Arch Psychiatry Clin Neurosci. 2024 Jul 24. doi: 10.1007/s00406-024-01871-3.

Abstract

Dynamic functional network connectivity (dFNC) is an expansion of static FNC (sFNC) that reflects connectivity variations among brain networks. This study aimed to investigate changes in sFNC and dFNC strength and temporal properties in individuals with subthreshold depression (StD). Forty-two individuals with subthreshold depression and 38 healthy controls (HCs) were included in this study. Group independent component analysis (GICA) was used to determine target resting-state networks, namely, executive control network (ECN), default mode network (DMN), sensorimotor network (SMN) and dorsal attentional network (DAN). Sliding window and k-means clustering analyses were used to identify dFNC patterns and temporal properties in each subject. We compared sFNC and dFNC differences between the StD and HCs groups. Relationships between changes in FNC strength, temporal properties, and neurophysiological score were evaluated by Spearman's correlation analysis. The sFNC analysis revealed decreased FNC strength in StD individuals, including the DMN-CEN, DMN-SMN, SMN-CEN, and SMN-DAN. In the dFNC analysis, 4 reoccurring FNC patterns were identified. Compared to HCs, individuals with StD had increased mean dwell time and fraction time in a weakly connected state (state 4), which is associated with self-focused thinking status. In addition, the StD group demonstrated decreased dFNC strength between the DMN-DAN in state 2. sFNC strength (DMN-ECN) and temporal properties were correlated with HAMD-17 score in StD individuals (all p < 0.01). Our study provides new evidence on aberrant time-varying brain activity and large-scale network interaction disruptions in StD individuals, which may provide novel insight to better understand the underlying neuropathological mechanisms.

摘要

动态功能网络连接性(dFNC)是静态功能网络连接性(sFNC)的扩展,它反映了脑网络之间的连接性变化。本研究旨在调查亚阈值抑郁(StD)个体中sFNC和dFNC强度及时间属性的变化。本研究纳入了42名亚阈值抑郁个体和38名健康对照(HCs)。采用组独立成分分析(GICA)来确定目标静息态网络,即执行控制网络(ECN)、默认模式网络(DMN)、感觉运动网络(SMN)和背侧注意网络(DAN)。使用滑动窗口和k均值聚类分析来识别每个受试者的dFNC模式和时间属性。我们比较了StD组和HCs组之间的sFNC和dFNC差异。通过Spearman相关分析评估功能网络连接性强度、时间属性变化与神经生理评分之间的关系。sFNC分析显示,StD个体的功能网络连接性强度降低,包括DMN-CEN、DMN-SMN、SMN-CEN和SMN-DAN。在dFNC分析中,识别出4种反复出现的功能网络连接性模式。与HCs相比,StD个体在弱连接状态(状态4)下的平均停留时间和分数时间增加,这与自我关注思维状态相关。此外,StD组在状态2下DMN-DAN之间的dFNC强度降低。StD个体的sFNC强度(DMN-ECN)和时间属性与HAMD-17评分相关(所有p<0.01)。我们的研究为StD个体异常的时变脑活动和大规模网络交互破坏提供了新证据,这可能为更好地理解潜在的神经病理机制提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验