ETS Montreal, 1100 Notre-Dame St West, Montreal, QC, H3C 1K3, Canada.
Spinologics Inc., 6750 Esplanade Avenue #290, Montreal, QC, H2V 1A2, Canada.
Int J Comput Assist Radiol Surg. 2024 Oct;19(10):1983-1990. doi: 10.1007/s11548-024-03237-5. Epub 2024 Jul 23.
Adolescent idiopathic scoliosis is a chronic disease that may require correction surgery. The finite element method (FEM) is a popular option to plan the outcome of surgery on a patient-based model. However, it requires considerable computing power and time, which may discourage its use. Machine learning (ML) models can be a helpful surrogate to the FEM, providing accurate real-time responses. This work implements ML algorithms to estimate post-operative spinal shapes.
The algorithms are trained using features from 6400 simulations generated using the FEM from spine geometries of 64 patients. The features are selected using an autoencoder and principal component analysis. The accuracy of the results is evaluated by calculating the root-mean-squared error and the angle between the reference and predicted position of each vertebra. The processing times are also reported.
A combination of principal component analysis for dimensionality reduction, followed by the linear regression model, generated accurate results in real-time, with an average position error of 3.75 mm and orientation angle error below 2.74 degrees in all main 3D axes, within 3 ms. The prediction time is considerably faster than simulations based on the FEM alone, which require seconds to minutes.
It is possible to predict post-operative spinal shapes of patients with AIS in real-time by using ML algorithms as a surrogate to the FEM. Clinicians can compare the response of the initial spine shape of a patient with AIS to various target shapes, which can be modified interactively. These benefits can encourage clinicians to use software tools for surgical planning of scoliosis.
青少年特发性脊柱侧凸是一种慢性病,可能需要矫正手术。有限元法(FEM)是一种基于患者模型规划手术结果的常用方法。然而,它需要大量的计算能力和时间,这可能会阻碍其使用。机器学习(ML)模型可以作为 FEM 的有用替代品,提供准确的实时响应。这项工作实施了 ML 算法来估计术后脊柱形状。
使用来自 64 名患者脊柱几何形状的 6400 个 FEM 模拟生成的特征来训练算法。使用自动编码器和主成分分析选择特征。通过计算每个椎骨的参考位置和预测位置之间的均方根误差和角度来评估结果的准确性。还报告了处理时间。
主成分分析用于降维,然后是线性回归模型,生成了实时的准确结果,所有主要的 3D 轴上的平均位置误差为 3.75 毫米,方向角度误差低于 2.74 度,均在 3 毫秒内。预测时间比单独基于 FEM 的模拟快得多,后者需要几秒钟到几分钟。
通过使用 ML 算法作为 FEM 的替代品,可以实时预测 AIS 患者的术后脊柱形状。临床医生可以将 AIS 患者初始脊柱形状的反应与各种目标形状进行比较,并可以进行交互式修改。这些好处可以鼓励临床医生使用软件工具来规划脊柱侧凸手术。