Batra Gayatri, Pille Laura, Arenas Benjamin E, Schnell Melanie
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
Phys Chem Chem Phys. 2024 Aug 7;26(31):20828-20836. doi: 10.1039/d4cp01899k.
The recent astronomical observations of the simplest aromatic nitrile benzonitrile, -CHCN, followed by a five-membered and a bicyclic CN-functionalized ring in TMC-1 have provided a significant impetus to the field for searches of cyclic complex organic molecules in space. One such example is 2,4,6-cycloheptatriene-1-carbonitrile, a seven-membered ring with a -CN group attached to the sp-hybridized carbon atom. With a permanent electric dipole moment of 4.3 D, this molecule is an excellent candidate for laboratory rotational spectroscopy. In this study, experiments were performed in the 2-8 GHz, 18-26 GHz, and 75-110 GHz frequency ranges in a supersonic expansion setup and a room temperature flow cell setup. The measurements across the broad frequency range of 2-110 GHz have enabled the identification and assignment of the vibronic ground state, singly substituted rare-atom isotopologues, and vibrationally excited states. Here, we report the precise determination of the rotational constants, quartic centrifugal distortion constants, nitrogen nuclear quadrupole coupling constants, as well as molecular structure in its vibronic ground state. The comprehensive rotational spectroscopy study of this molecule, covering a large frequency range, forms the basis for its future astronomical detection and thus for extending the pool of detected complex cyclic molecules.
最近对最简单的芳香腈苯甲腈(-CHCN)进行的天文观测,以及在TMC-1中发现的一个五元环和一个双环CN官能化环,为在太空中搜索环状复杂有机分子的领域提供了重要推动力。一个这样的例子是2,4,6-环庚三烯-1-甲腈,它是一个七元环,在sp杂化碳原子上连接有一个-CN基团。该分子具有4.3 D的永久电偶极矩,是实验室旋转光谱的极佳候选对象。在本研究中,实验在超音速膨胀装置和室温流动池装置中,于2-8 GHz、18-26 GHz和75-110 GHz频率范围内进行。在2-110 GHz的宽频率范围内进行的测量,使得能够识别和归属振转基态、单取代稀有原子同位素分子以及振动激发态。在此,我们报告了对其旋转常数、四次离心畸变常数、氮核四极耦合常数以及振转基态分子结构的精确测定。对该分子在大频率范围内进行的全面旋转光谱研究,为其未来的天文探测奠定了基础,从而也为扩展已探测到的复杂环状分子库奠定了基础。