Suppr超能文献

血管紧张素转化酶(ACE)抑制剂结构基础研究进展。

Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors.

机构信息

Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, Republic of South Africa.

出版信息

Biosci Rep. 2024 Aug 28;44(8). doi: 10.1042/BSR20240130.

Abstract

Human somatic angiotensin-converting enzyme (ACE) is a key zinc metallopeptidase that plays a pivotal role in the renin-angiotensin-aldosterone system (RAAS) by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided invaluable insights into the molecular mechanisms underlying ACE inhibition, facilitating the design and development of more effective therapeutic agents. This review focuses on the latest advancements in elucidating the structural basis for ACE inhibition. High-resolution crystallographic studies of minimally glycosylated individual domains of ACE have revealed intricate molecular details of the ACE catalytic N- and C-domains, and their detailed interactions with clinically relevant and newly designed domain-specific inhibitors. In addition, the recently elucidated structure of the glycosylated form of full-length ACE by cryo-electron microscopy (cryo-EM) has shed light on the mechanism of ACE dimerization and revealed continuous conformational changes which occur prior to ligand binding. In addition to these experimental techniques, computational approaches have also played a pivotal role in elucidating the structural basis for ACE inhibition. Molecular dynamics simulations and computational docking studies have provided atomic details of inhibitor binding kinetics and energetics, facilitating the rational design of novel ACE inhibitors with improved potency and selectivity. Furthermore, computational analysis of the motions observed by cryo-EM allowed the identification of allosteric binding sites on ACE. This affords new opportunities for the development of next-generation allosteric inhibitors with enhanced pharmacological properties. Overall, the insights highlighted in this review could enable the rational design of novel ACE inhibitors with improved efficacy and safety profiles, ultimately leading to better therapeutic outcomes for patients with hypertension and cardiovascular diseases.

摘要

人类的体血管紧张素转化酶(ACE)是一种关键的锌金属肽酶,通过调节血压和电解质平衡,在肾素-血管紧张素-醛固酮系统(RAAS)中发挥着关键作用。ACE 的抑制作用是治疗高血压、心血管疾病和肾脏疾病的基石。结构生物学技术的最新进展为 ACE 抑制的分子机制提供了宝贵的见解,促进了更有效治疗剂的设计和开发。本文综述了阐明 ACE 抑制的结构基础的最新进展。对 ACE 最小糖基化的单个结构域的高分辨率晶体学研究揭示了 ACE 催化 N 域和 C 域的复杂分子细节,以及它们与临床相关和新设计的特定结构域抑制剂的详细相互作用。此外,最近通过低温电子显微镜(cryo-EM)阐明的全长 ACE 糖基化形式的结构揭示了 ACE 二聚化的机制,并揭示了在配体结合之前发生的连续构象变化。除了这些实验技术外,计算方法在阐明 ACE 抑制的结构基础方面也发挥了关键作用。分子动力学模拟和计算对接研究提供了抑制剂结合动力学和能量学的原子细节,促进了新型 ACE 抑制剂的合理设计,提高了其效力和选择性。此外,对 cryo-EM 观察到的运动的计算分析确定了 ACE 上的变构结合位点。这为开发具有增强的药理学特性的下一代变构抑制剂提供了新的机会。总体而言,本文综述中强调的见解可以实现新型 ACE 抑制剂的合理设计,提高其疗效和安全性,最终为高血压和心血管疾病患者带来更好的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24d/11300679/827b1dc896b4/bsr-44-bsr20240130-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验