Liu Jiaheng, Wang Pengbo, Luan Jun, Chen Junwei, Cai Pengcheng, Chen Jianhua, Lu Xionggang, Fan Yunying, Yu Zhigang, Chou Kuochih
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University,99 Shangda Road, Baoshan District, Shanghai 200444, China.
State Key Laboratory of Advanced Metallurgy & Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
J Chem Theory Comput. 2024 Dec 24;20(24):11082-11092. doi: 10.1021/acs.jctc.4c00340. Epub 2024 Jul 24.
The short-range order (SRO) structure in high-entropy alloys (HEAs) is closely associated with many properties, which can be studied through density functional theory (DFT) calculations. Atomic-scale modeling and calculations require substantial computational resources, and machine learning can provide rapid estimations of DFT results. To describe SRO information in HEAs, a new descriptor based on Voronoi Analysis and Shannon Entropy (VASE) is proposed. Based on Voronoi analysis, the Shannon entropy is introduced to directly characterize atomic spatial arrangement information except for composition and atomic interactions, which is necessary for describing the disorder atomic occupancy in HEAs. The new descriptor is used for predicting the formation energy of FeCoNiAlTiCu system based on machine learning model, which is more accurate than other descriptors (Coulomb matrices, partial radial distribution functions, and Voronoi analysis). Moreover, the model trained based on VASE descriptors exhibits the best predictive performance for unrelaxed structures (24.06 meV/atom). The introduction of Shannon entropy provides an effective representation of atomic arrangement information in HEAs, which is a powerful tool for investigating the SRO phenomena.
高熵合金(HEAs)中的短程有序(SRO)结构与许多性能密切相关,可通过密度泛函理论(DFT)计算进行研究。原子尺度的建模和计算需要大量的计算资源,而机器学习可以快速估计DFT结果。为了描述高熵合金中的SRO信息,提出了一种基于Voronoi分析和香农熵(VASE)的新描述符。基于Voronoi分析,引入香农熵以直接表征除成分和原子相互作用之外的原子空间排列信息,这对于描述高熵合金中无序的原子占据情况是必要的。该新描述符用于基于机器学习模型预测FeCoNiAlTiCu体系的形成能,其比其他描述符(库仑矩阵、部分径向分布函数和Voronoi分析)更准确。此外,基于VASE描述符训练的模型对未弛豫结构表现出最佳的预测性能(24.06 meV/原子)。香农熵的引入为高熵合金中的原子排列信息提供了一种有效的表示,这是研究SRO现象的有力工具。