College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.
ACS Sens. 2024 Aug 23;9(8):4107-4118. doi: 10.1021/acssensors.4c01050. Epub 2024 Jul 24.
A Pt nanoparticle-immobilized WO material is a promising candidate for catalytic reactions, and the surface and electronic structure can strongly affect the performance. However, the effect of the intrinsic oxygen vacancy of WO on the d-band structure of Pt and the synergistic effect of Pt and the WO matrix on reaction performance are still ambiguous, which greatly hinders the design of advanced materials. Herein, Pt-decorated WO nanosheets with different electronic metal-support interactions are successfully prepared by finely tuning the oxygen vacancy structure of WO nanosheets. Notably, Pt-modified WO nanosheets annealed at 400 °C exhibit excellent benzene series (BTEX) sensing performance ( = 377.33, 365.21, 348.45, and 319.23 for 50 ppm ethylbenzene, benzene, toluene, and xylene, respectively, at 140 °C), fast response and recovery dynamics (10/7 s), excellent reliability (σ = 0.14), and sensing stability (φ = 0.08%). Detailed structural characterization and DFT results reveal that interfacial Pt-O-W sites are recognized as the active sites, and the oxygen vacancies of the WO matrix can significantly affect the d-band structure of Pt nanoparticles. Notably, Pt/WO-400 with improved surface oxygen mobility and medium electronic metal-support interaction facilitates the activation and desorption of BTEX, which contributes to the highly efficient BTEX sensing performance. Our work provides a new insight for the design of high-performance surface reaction materials for advanced applications.
Pt 纳米颗粒固定 WO 材料是催化反应的有前途的候选材料,其表面和电子结构会强烈影响性能。然而,WO 的本征氧空位对 Pt 的 d 带结构以及 Pt 和 WO 基体之间的协同效应对反应性能的影响仍然不清楚,这极大地阻碍了先进材料的设计。在此,通过精细调节 WO 纳米片的氧空位结构,成功制备了具有不同电子金属-载体相互作用的 Pt 修饰 WO 纳米片。值得注意的是,在 400°C 下退火的 Pt 修饰 WO 纳米片表现出优异的苯系物(BTEX)传感性能(在 140°C 下,对于 50 ppm 的乙苯、苯、甲苯和二甲苯,分别为 377.33、365.21、348.45 和 319.23),快速的响应和恢复动力学(10/7 s),出色的可靠性(σ=0.14)和传感稳定性(φ=0.08%)。详细的结构表征和 DFT 结果表明,界面 Pt-O-W 位被认为是活性位,WO 基体中的氧空位可以显著影响 Pt 纳米颗粒的 d 带结构。值得注意的是,具有改善的表面氧迁移率和中等电子金属-载体相互作用的 Pt/WO-400 促进了 BTEX 的活化和脱附,这有助于实现高效的 BTEX 传感性能。我们的工作为设计用于先进应用的高性能表面反应材料提供了新的见解。