Jiang Haopeng, Xu Jinghang, Sun Lijuan, Li Jinhe, Wang Lele, Wang Weikang, Liu Qinqin, Yang Juan
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
Inorg Chem. 2024 Aug 5;63(31):14746-14754. doi: 10.1021/acs.inorgchem.4c02428. Epub 2024 Jul 24.
The development of photocatalytic systems with an electron tandem transport channel represents a promising avenue for improving the utilization of photogenerated electrons and holes despite encountering significant challenges. In this study, ZnInS (Sv-ZIS) with sulfur vacancies was fabricated using a solvothermal technique to create defect energy levels. Subsequently, CuP nanoparticles were coupled onto the surface of Sv-ZIS, forming a CuP/Sv-ZIS p-n heterojunction with an electron tandem transport channel. Experimental findings demonstrated that this tandem transport channel enhanced the carrier lifetime and separation efficiency. In addition, mechanistic investigations unveiled the formation of a robust built-in electric field (BEF) at the interface between CuP and Sv-ZIS, providing a driving force for electron migration. The combined consequences of the transport channel, the strong BEF, and photothermal effect led to a surface carrier separation efficiency of 65.85%. Consequently, CuP/Sv-ZIS achieved simultaneous H yield and benzaldehyde production rates of 18,101.4 and 15,012.6 μmol·g·h, which were 2.31 and 2.62 times higher than those of ZnInS, respectively. This work exemplifies the design of the p-n heterojunction for the efficient utilization of photogenerated electrons and holes.
尽管面临重大挑战,但开发具有电子串联传输通道的光催化系统仍是提高光生电子和空穴利用率的一条有前景的途径。在本研究中,采用溶剂热技术制备了具有硫空位的ZnInS(Sv-ZIS)以产生缺陷能级。随后,将CuP纳米颗粒耦合到Sv-ZIS表面,形成具有电子串联传输通道的CuP/Sv-ZIS p-n异质结。实验结果表明,这种串联传输通道提高了载流子寿命和分离效率。此外,机理研究揭示了在CuP和Sv-ZIS界面处形成了强大的内建电场(BEF),为电子迁移提供了驱动力。传输通道、强大的BEF和光热效应共同作用,导致表面载流子分离效率达到65.85%。因此,CuP/Sv-ZIS实现了同时产氢和苯甲醛的速率分别为18,101.4和15,012.6 μmol·g·h,分别是ZnInS的2.31倍和2.62倍。这项工作例证了用于高效利用光生电子和空穴的p-n异质结的设计。