Faculty of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, Canada.
Scientific Research School of Egypt (SRSEG), Cairo, Egypt.
PLoS One. 2024 Jul 24;19(7):e0306874. doi: 10.1371/journal.pone.0306874. eCollection 2024.
Climate change mitigation necessitates increased investment in green sectors. This study proposes a methodology to predict green finance growth across various countries, aiming to encourage such investments. Our approach leverages time-series Conditional Generative Adversarial Networks (CT-GANs) for data augmentation and Nonlinear Autoregressive Neural Networks (NARNNs) for prediction. The green finance growth predicting model was applied to datasets collected from forty countries across five continents. The Augmented Dickey-Fuller (ADF) test confirmed the non-stationary nature of the data, supporting the use of Nonlinear Autoregressive Neural Networks (NARNNs). CT-GANs were then employed to augment the data for improved prediction accuracy. Results demonstrate the effectiveness of the proposed model. NARNNs trained with CT-GAN augmented data achieved superior performance across all regions, with R-squared (R2) values of 98.8%, 96.6%, and 99% for Europe, Asia, and other countries respectively. While the RMSE for Europe, Asia, and other countries are 1.26e+2, 2.16e+2, and 1.16e+2 respectively. Compared to a baseline NARNN model without augmentation, CT-GAN augmentation significantly improved both R2 and RMSE. The R2 values for the Europe, Asia, and other countries models are 96%, 73%, and 97.2%, respectively. The RMSE values for the Europe, Asia, and various countries models are 2.24e+2, 7e+2, and 2.07e+2, respectively. The Nonlinear Autoregressive Exogenous Neural Network (NARX-NN) exhibited significantly lower performance across Europe, Asia, and other countries with R2 values of 74%, 52%, and 86%, and RMSE values of 1.11e+2, 3.63e+2, and 1.8e+2, respectively.
气候变化缓解需要增加对绿色领域的投资。本研究提出了一种方法来预测各国的绿色金融增长,旨在鼓励此类投资。我们的方法利用时间序列条件生成对抗网络(CT-GAN)进行数据扩充和非线性自回归神经网络(NARNN)进行预测。绿色金融增长预测模型应用于从五大洲 40 个国家收集的数据集中。增广迪基-富勒检验(ADF)证实了数据的非平稳性,支持使用非线性自回归神经网络(NARNN)。然后使用 CT-GAN 来扩充数据以提高预测精度。结果证明了所提出模型的有效性。使用 CT-GAN 扩充数据训练的 NARNN 在所有地区的表现都更好,欧洲、亚洲和其他国家的 R 平方(R2)值分别为 98.8%、96.6%和 99%。而欧洲、亚洲和其他国家的 RMSE 分别为 1.26e+2、2.16e+2 和 1.16e+2。与未经扩充的基准 NARNN 模型相比,CT-GAN 扩充显著提高了 R2 和 RMSE。欧洲、亚洲和其他国家模型的 R2 值分别为 96%、73%和 97.2%。欧洲、亚洲和不同国家模型的 RMSE 值分别为 2.24e+2、7e+2 和 2.07e+2。非线性自回归外生神经网络(NARX-NN)在欧洲、亚洲和其他国家的表现明显较低,R2 值分别为 74%、52%和 86%,RMSE 值分别为 1.11e+2、3.63e+2 和 1.8e+2。