Suppr超能文献

生成对抗网络提高胎儿脑精细平面分类。

Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification.

机构信息

Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.

BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Sant Joan de Deu), 08028 Barcelona, Spain.

出版信息

Sensors (Basel). 2021 Nov 29;21(23):7975. doi: 10.3390/s21237975.

Abstract

Generative adversarial networks (GANs) have been recently applied to medical imaging on different modalities (MRI, CT, X-ray, etc). However there are not many applications on ultrasound modality as a data augmentation technique applied to downstream classification tasks. This study aims to explore and evaluate the generation of synthetic ultrasound fetal brain images via GANs and apply them to improve fetal brain ultrasound plane classification. State of the art GANs were applied to fetal brain image generation and GAN-based data augmentation classifiers were compared with baseline classifiers. Our experimental results show that using data generated by both GANs and classical augmentation strategies allows for increasing the accuracy and area under the curve score.

摘要

生成对抗网络(GAN)最近已被应用于不同模式(MRI、CT、X 射线等)的医学成像。然而,作为一种应用于下游分类任务的数据增强技术,在超声模式下的应用并不多。本研究旨在探索和评估通过 GAN 生成合成超声胎儿脑图像,并将其应用于改善胎儿脑超声平面分类。最先进的 GAN 被应用于胎儿脑图像生成,基于 GAN 的数据增强分类器与基线分类器进行了比较。我们的实验结果表明,使用 GAN 和经典增强策略生成的数据可以提高准确性和曲线下面积评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0341/8659720/d84f42f2d260/sensors-21-07975-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验