Suppr超能文献

撒哈拉沙尘对大西洋盆地热带气旋降雨的主导作用。

Leading role of Saharan dust on tropical cyclone rainfall in the Atlantic Basin.

作者信息

Zhu Laiyin, Wang Yuan, Chavas Dan, Johncox Max, Yung Yuk L

机构信息

School of Environment, Geography, and Sustainability, Western Michigan University, Kalamazoo, MI, USA.

Department of Earth System Science, Stanford University, Stanford, CA, USA.

出版信息

Sci Adv. 2024 Jul 26;10(30):eadn6106. doi: 10.1126/sciadv.adn6106. Epub 2024 Jul 24.

Abstract

Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for individual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evidently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR, with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhancement to radiative suppression at high dust concentrations. The model also highlights meaningful correlations between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding its driving factors and physical mechanisms.

摘要

热带气旋降雨(TCR)主要通过内陆洪水对沿海社区产生广泛影响。全球气候变化对TCR的影响复杂且存在争议。本研究使用一个XGBoost机器学习模型,结合19年的气象数据和每小时的卫星降水观测数据,来预测单个风暴的TCR。该模型将沙尘光学厚度(DOD)确定为一个能显著提高预测性能的关键预测因子。该模型还揭示了撒哈拉沙尘与TCR之间的非线性和回旋镖形状关系,TCR在DOD为0.06时达到峰值,此后急剧下降。这表明在高沙尘浓度下,从微物理增强转变为辐射抑制。该模型还突出了TCR与风暴核心附近的海面温度和相当位温等气象因子之间有意义的相关性。这些发现说明了机器学习在预测TCR以及理解其驱动因素和物理机制方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98d/11268405/b32fc6d6d297/sciadv.adn6106-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验