Suppr超能文献

儿童早期大脑网络动态变化:模块图度量的新见解。

Evolving brain network dynamics in early childhood: Insights from modular graph metrics.

机构信息

School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.

School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.

出版信息

Neuroimage. 2024 Aug 15;297:120740. doi: 10.1016/j.neuroimage.2024.120740. Epub 2024 Jul 23.

Abstract

Modular dynamic graph theory metrics effectively capture the patterns of dynamic information interaction during human brain development. While existing research has employed modular algorithms to examine the overall impact of dynamic changes in community structure throughout development, there is a notable gap in understanding the cross-community dynamic changes within different functional networks during early childhood and their potential contributions to the efficiency of brain information transmission. This study seeks to address this gap by tracing the trajectories of cross-community structural changes within early childhood functional networks and modeling their contributions to information transmission efficiency. We analyzed 194 functional imaging scans from 83 children aged 2 to 8 years, who participated in passive viewing functional magnetic resonance imaging sessions. Utilizing sliding windows and modular algorithms, we evaluated three spatiotemporal metrics-temporal flexibility, spatiotemporal diversity, and within-community spatiotemporal diversity-and four centrality metrics: within-community degree centrality, eigenvector centrality, between-community degree centrality, and between-community eigenvector centrality. Mixed-effects linear models revealed significant age-related increases in the temporal flexibility of the default mode network (DMN), executive control network (ECN), and salience network (SN), indicating frequent adjustments in community structure within these networks during early childhood. Additionally, the spatiotemporal diversity of the SN also displayed significant age-related increases, highlighting its broad pattern of cross-community dynamic interactions. Conversely, within-community spatiotemporal diversity in the language network exhibited significant age-related decreases, reflecting the network's gradual functional specialization. Furthermore, our findings indicated significant age-related increases in between-community degree centrality across the DMN, ECN, SN, language network, and dorsal attention network, while between-community eigenvector centrality also increased significantly for the DMN, ECN, and SN. However, within-community eigenvector centrality remained stable across all functional networks during early childhood. These results suggest that while centrality of cross-community interactions in early childhood functional networks increases, centrality within communities remains stable. Finally, mediation analysis was conducted to explore the relationships between age, brain dynamic graph metrics, and both global and local efficiency based on community structure. The results indicated that the dynamic graph metrics of the SN primarily mediated the relationship between age and the decrease in global efficiency, while those of the DMN, language network, ECN, dorsal attention network, and SN primarily mediated the relationship between age and the increase in local efficiency. This pattern suggests a developmental trajectory in early childhood from global information integration to local information segregation, with the SN playing a pivotal role in this transformation. This study provides novel insights into the mechanisms by which early childhood brain functional development impacts information transmission efficiency through cross-community adjustments in functional networks.

摘要

模块化动态图理论指标有效地捕捉了人类大脑发育过程中动态信息交互的模式。虽然现有研究已经采用模块化算法来研究整个社区结构在整个发育过程中动态变化的总体影响,但对于理解儿童早期不同功能网络之间的跨社区动态变化及其对大脑信息传输效率的潜在贡献,仍然存在明显的差距。本研究通过追踪儿童早期功能网络中跨社区结构变化的轨迹,并对其对信息传输效率的贡献进行建模,旨在解决这一差距。我们分析了 83 名 2 至 8 岁儿童的 194 次功能成像扫描,这些儿童参与了被动观看功能磁共振成像。我们利用滑动窗口和模块化算法,评估了三个时空指标——时间灵活性、时空多样性和社区内时空多样性,以及四个中心性指标:社区内度中心性、特征向量中心性、社区间度中心性和社区间特征向量中心性。混合效应线性模型揭示了默认模式网络(DMN)、执行控制网络(ECN)和突显网络(SN)的年龄相关的时间灵活性显著增加,这表明在儿童早期这些网络中的社区结构经常进行调整。此外,SN 的时空多样性也呈现出显著的年龄相关增加,突出了其跨社区动态交互的广泛模式。相反,语言网络的社区内时空多样性呈现出显著的年龄相关下降,反映了该网络的逐渐功能专业化。此外,我们的发现表明,DMN、ECN、SN、语言网络和背侧注意网络的跨社区度中心性随着年龄的增长而显著增加,而 DMN、ECN 和 SN 的跨社区特征向量中心性也显著增加。然而,在儿童早期,所有功能网络的社区内特征向量中心性都保持稳定。这些结果表明,尽管儿童早期功能网络中跨社区相互作用的中心性增加,但社区内的中心性保持稳定。最后,进行了中介分析,以探讨年龄、大脑动态图指标以及基于社区结构的全局和局部效率之间的关系。结果表明,SN 的动态图指标主要介导了年龄与全局效率下降之间的关系,而 DMN、语言网络、ECN、背侧注意网络和 SN 的动态图指标主要介导了年龄与局部效率增加之间的关系。这种模式表明,儿童早期从全局信息整合到局部信息分离存在发展轨迹,SN 在这种转变中起着关键作用。本研究提供了新的见解,即儿童早期大脑功能发育如何通过功能网络中跨社区的调整来影响信息传输效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验