Franks Matthew, Dieminger Till, Kaneyasu Kodai, Sgalaberna Davide, Bruschini Claudio, Charbon Edoardo, Kose Umut, Li Botao, Mos Paul, Wayne Michael, Weber Tim, Wu Jialin
Institute for Particle Physics and Astrophysics (IPA), ETH Zürich, Ramistrasse, 8093 Zürich, Switzerland.
Advanced Quantum Architecture Lab (AQUA), EPFL, Rue de la Maladière, 2000 Neuchâtel, Switzerland.
Eur Phys J C Part Fields. 2024;84(2):202. doi: 10.1140/epjc/s10052-024-12509-y. Epub 2024 Feb 27.
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hundred m diameter are used, either they are grouped together and coupled with a single SiPM, losing spatial resolution, or a very large number of electronic channels is required. In this article we propose and provide a first demonstration of a novel configuration which allows each individual scintillating fibre to be read out regardless of the size of its diameter, by imaging them with Single-Photon Avalanche Diode (SPAD) array sensors. Differently from SiPMs, SPAD array sensors provide single-photon detection with single-pixel spatial resolution. In addition, O(us) or faster coincidence of detected photons allows to obtain noise-free images. Such a concept can be particularly advantageous if adopted as a neutrino active target, where scintillating fibres alternated along orthogonal directions can provide isotropic, high-resolution tracking in a dense material and reconstruct the kinematics of low-momentum protons (down to 150 MeV/c), crucial for an accurate characterisation of the neutrino-nucleus cross section. In this work the tracking capabilities of a bundle of scintillating fibres coupled to SwissSPAD2 is demonstrated. The impact of such detector configuration in GeV-neutrino experiments is studied with simulations and reported. Finally, future plans, including the development of a new SPAD array sensor optimised for neutrino detection, are discussed.
闪烁光纤探测器结合了亚毫米分辨率的粒子跟踪、粒子阻止本领的精确测量和亚纳秒时间分辨率。通常,光纤由硅光电倍增管(SiPM)读出。因此,如果使用直径几百微米的光纤,要么将它们聚集在一起并与单个SiPM耦合,从而失去空间分辨率,要么需要大量的电子通道。在本文中,我们提出并首次展示了一种新颖的配置,通过使用单光子雪崩二极管(SPAD)阵列传感器对每根闪烁光纤进行成像,无论其直径大小如何,都能对其进行读出。与SiPM不同,SPAD阵列传感器以单像素空间分辨率提供单光子检测。此外,检测到的光子的微秒级或更快的符合允许获得无噪声图像。如果将这种概念用作中微子活性靶标,可能会特别有利,其中沿正交方向交替排列的闪烁光纤可以在致密材料中提供各向同性的高分辨率跟踪,并重建低动量质子(低至150 MeV/c)的运动学,这对于精确表征中微子-核截面至关重要。在这项工作中,展示了一束与SwissSPAD2耦合的闪烁光纤的跟踪能力。通过模拟研究并报告了这种探测器配置在GeV中微子实验中的影响。最后,讨论了未来计划,包括开发一种针对中微子探测优化的新型SPAD阵列传感器。