Suppr超能文献

分析ZnO/FTO、锡铜掺杂ZnO/FTO薄膜的抗菌活性:制备与表征。

Analyzing antimicrobial activity of ZnO/FTO, Sn-Cu-doped ZnO/FTO thin films: Production and characterizations.

作者信息

Kara Ilker, Hafedh Abjar Ibrahim Rashid, Alhusseinawi Nooralhuda Kareem Hanoon, Kayış Ahmet Furkan, Yalçınkaya Özcan, Acar Berat Cinar, Yuksekdag Zehranur, Ozen Yunus, Gençyılmaz Olcay, Ozkan Engin Can, Oner Hayrettin

机构信息

Graduate School of Natural and Applied Sciences, Çankırı Karatekin University, Çankırı, Turkey.

Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey.

出版信息

Microsc Res Tech. 2024 Dec;87(12):2915-2928. doi: 10.1002/jemt.24638. Epub 2024 Jul 25.

Abstract

In the developing field of nanotechnology, ZnO (zinc oxide) based semiconductor samples have emerged as the foremost choice due to their immense potential for advancing the development of cutting-edge nanodevices. Due to its excellent chemical stability, low cost, and non-toxicity to biological systems, it is also utilized in various investigations. In this study, the successive ionic layer adsorption and reaction (SILAR) method was used to generate FTO (fluorine-doped tin oxide)/ZnO, and tin (Sn)-copper (Cu)-doped ZnO thin films at varying concentrations on FTO substrates. After being stacked 40 times in varying concentrations on the FTO substrate, FTO/ZnO thin films and Sn-Cu-doped thin films were annealed at 300°C. Using Scanning Electron Microscopy (SEM) Energy Dispersive Spectroscopy-(EDS), the agar diffusion test, and the viability cell counting method, the minimum inhibitory concentration, structural properties, surface morphology, antibacterial properties, bacterial adhesion, and survival organism count of FTO/ZnO thin films and Sn-Cu-doped thin films were investigated. Both doped and FTO/ZnO films with varying Sn-Cu concentrations expanded harmonically on the FTO substrate, according to the SEM-EDS investigation. The doping concentration affected their morphological properties, causing changes depending on the doping level. Antibacterial activity was observed in the powder metals, but no antibacterial activity was found in the thin film form. The highest adhesion rate of bacterial organisms on the produced samples was observed when the FTO/ZnO/Sn-Cu doping rate was 1%. In addition, the lowest adhesion rate was observed when the FTO/ZnO/Sn-Cu additive ratio was 3%. RESEARCH HIGHLIGHTS: ZnO based semiconductors highlight significant potential in advancing nanodevice technology due to their chemical stability, cost-effectiveness, and biocompatibility. Employing the SILAR method, the study innovatively fabricates FTO/ZnO and Sn-Cu-doped ZnO thin films on FTO substrates, exploring a novel approach in semiconductor manufacturing. Post annealing at 300°C, the research examines the structural and surface morphological changes in the films, contributing to the understanding of semiconductor behavior under varying conditions. The study delves into the antibacterial properties of ZnO thin films, offering insights into the potential biomedical applications of these materials. SEM-EDS analysis reveals that doping concentrations crucially influence the morphological properties of ZnO thin films, shedding light on the optimization of semiconductor performance. Findings indicate a specific doping rate (1% Sn-Cu) enhances bacterial adhesion, while a 3% additive ratio minimizes it, suggesting implications for biomedical device engineering and antibacterial surface design.

摘要

在纳米技术这一不断发展的领域中,基于氧化锌(ZnO)的半导体样品因其在推动前沿纳米器件发展方面的巨大潜力而成为首要选择。由于其出色的化学稳定性、低成本以及对生物系统无毒,它还被用于各种研究中。在本研究中,采用连续离子层吸附和反应(SILAR)方法在FTO(氟掺杂氧化锡)衬底上制备了不同浓度的FTO/ZnO以及锡(Sn)-铜(Cu)掺杂的ZnO薄膜。在FTO衬底上以不同浓度堆叠40次后,FTO/ZnO薄膜和Sn-Cu掺杂薄膜在300°C下进行退火处理。使用扫描电子显微镜(SEM)能谱仪(EDS)、琼脂扩散试验和活细胞计数法,对FTO/ZnO薄膜和Sn-Cu掺杂薄膜的最低抑菌浓度、结构性能、表面形态、抗菌性能、细菌粘附以及存活生物体数量进行了研究。根据SEM-EDS研究,不同Sn-Cu浓度的掺杂薄膜和FTO/ZnO薄膜在FTO衬底上均能均匀生长。掺杂浓度影响了它们的形态特性,根据掺杂水平产生变化。在粉末金属中观察到了抗菌活性,但在薄膜形式中未发现抗菌活性。当FTO/ZnO/Sn-Cu掺杂率为1%时,在制备的样品上观察到细菌生物体的最高粘附率。此外,当FTO/ZnO/Sn-Cu添加剂比例为3%时,观察到最低粘附率。研究亮点:基于ZnO的半导体因其化学稳定性、成本效益和生物相容性,在推进纳米器件技术方面具有显著潜力。本研究采用SILAR方法,创新性地在FTO衬底上制备了FTO/ZnO和Sn-Cu掺杂的ZnO薄膜,并探索了半导体制造的新方法。在300°C退火后,该研究考察了薄膜的结构和表面形态变化,有助于理解不同条件下半导体的行为。该研究深入探讨了ZnO薄膜的抗菌性能,为这些材料在生物医学领域的潜在应用提供了见解。SEM-EDS分析表明,掺杂浓度对ZnO薄膜的形态特性有至关重要的影响,为优化半导体性能提供了思路。研究结果表明,特定的掺杂率(1% Sn-Cu)会增强细菌粘附,而3%的添加剂比例会使其最小化,这对生物医学设备工程和抗菌表面设计具有启示意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验