Suppr超能文献

揭示物理化学差异在预测蛋白质-蛋白质相互作用中的作用。

Unraveling the role of physicochemical differences in predicting protein-protein interactions.

机构信息

Department of Chemistry, Rice University, Houston, Texas 77005, USA.

Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA.

出版信息

J Chem Phys. 2024 Jul 28;161(4). doi: 10.1063/5.0219501.

Abstract

The ability to accurately predict protein-protein interactions is critically important for understanding major cellular processes. However, current experimental and computational approaches for identifying them are technically very challenging and still have limited success. We propose a new computational method for predicting protein-protein interactions using only primary sequence information. It utilizes the concept of physicochemical similarity to determine which interactions will most likely occur. In our approach, the physicochemical features of proteins are extracted using bioinformatics tools for different organisms. Then they are utilized in a machine-learning method to identify successful protein-protein interactions via correlation analysis. It was found that the most important property that correlates most with the protein-protein interactions for all studied organisms is dipeptide amino acid composition (the frequency of specific amino acid pairs in a protein sequence). While current approaches often overlook the specificity of protein-protein interactions with different organisms, our method yields context-specific features that determine protein-protein interactions. The analysis is specifically applied to the bacterial two-component system that includes histidine kinase and transcriptional response regulators, as well as to the barnase-barstar complex, demonstrating the method's versatility across different biological systems. Our approach can be applied to predict protein-protein interactions in any biological system, providing an important tool for investigating complex biological processes' mechanisms.

摘要

准确预测蛋白质-蛋白质相互作用对于理解主要的细胞过程至关重要。然而,目前用于识别这些相互作用的实验和计算方法在技术上具有很大的挑战性,并且仍然取得了有限的成功。我们提出了一种新的计算方法,仅使用原始序列信息来预测蛋白质-蛋白质相互作用。它利用物理化学相似性的概念来确定最有可能发生的相互作用。在我们的方法中,使用生物信息学工具从不同的生物体中提取蛋白质的物理化学特征。然后,它们被用于机器学习方法中,通过相关分析来识别成功的蛋白质-蛋白质相互作用。研究发现,对于所有研究的生物体,与蛋白质-蛋白质相互作用最相关的最重要属性是二肽氨基酸组成(蛋白质序列中特定氨基酸对的频率)。虽然当前的方法经常忽略不同生物体中蛋白质-蛋白质相互作用的特异性,但我们的方法产生了决定蛋白质-蛋白质相互作用的特定于上下文的特征。该分析特别应用于包括组氨酸激酶和转录反应调节剂的细菌双组分系统,以及 barnase-barstar 复合物,证明了该方法在不同生物系统中的多功能性。我们的方法可用于预测任何生物系统中的蛋白质-蛋白质相互作用,为研究复杂生物过程的机制提供了重要工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验