Suppr超能文献

氧化还原土壤有机质加速和维持微生物三价铁还原。

Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction.

机构信息

Institute of Geosciences, Friedrich-Schiller-University Jena, Burgweg 11, D-07749 Jena, Germany.

Institute of Groundwater Ecology, Helmholtz Centre Munich-German Research Center for Environmental Health, D-85764 Neuherberg, Germany.

出版信息

Environ Sci Technol. 2021 Aug 3;55(15):10821-10831. doi: 10.1021/acs.est.1c01183. Epub 2021 Jul 21.

Abstract

Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by . We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and included-unlike water-extractable OM-compounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)-OM coprecipitates forming at anoxic-oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.

摘要

微生物还原三价铁矿物是氧化还原土壤中的一个重要过程,强烈受到有机质(OM)的影响。我们在此通过. 确定了 Fh(水铁矿)被吸附或共沉淀 OM 时微生物还原的速率和程度。我们专注于 OM 对电子摄取的影响以及 Fh 结晶度的改变。OM 来自缺氧土壤柱(流出 OM,efOM),并且不同于在缺氧条件下微生物活性释放的可水提取 OM 化合物。我们发现,efOM 中的有机分子通常没有或只有很低的电子接受能力,并且当与 Fh 共沉淀时被纳入 Fh 聚集体中。与不含 OM 的 Fh 相比,efOM 对 Fh 的吸附通过使 Fh 表面钝化而减缓了微生物 Fe(III)还原,从而阻碍了电子摄取。相比之下,efOM 与 Fh 的共沉淀加速了微生物还原,可能是因为 efOM 破坏了 Fh 结构,正如 Mössbauer 光谱所指出的。此外,吸附和共沉淀的 efOM 导致更持续的 Fe(III)还原,这可能是因为 efOM 有效地清除了生物 Fe(II),并防止了吸附的 Fe(II)对 Fh 表面的钝化。因此,在缺氧-好氧界面形成的 Fe(III)-OM 共沉淀物很可能容易被氧化还原土壤中的 Fe(III)还原细菌还原。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验