Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, Zurich, CHN CH-8092, Switzerland.
Environ Sci Technol. 2023 Jun 27;57(25):9204-9213. doi: 10.1021/acs.est.3c01336. Epub 2023 Jun 9.
It is known that the association of soil organic matter (SOM) with iron minerals limits carbon mobilization and degradation in aerobic soils and sediments. However, the efficacy of iron mineral protection mechanisms under reducing soil conditions, where Fe(III)-bearing minerals may be used as terminal electron acceptors, is poorly understood. Here, we quantified the extent to which iron mineral protection inhibits mineralization of organic carbon in reduced soils by adding dissolved C-glucuronic acid, a Fe-ferrihydrite-C-glucuronic acid coprecipitate, or pure Fe-ferrihydrite to anoxic soil slurries. In tracking the re-partitioning and transformation of C-glucuronic acid and native SOM, we find that coprecipitation suppresses mineralization of C-glucuronic acid by 56% after 2 weeks (at 25 °C) and decreases to 27% after 6 weeks, owing to ongoing reductive dissolution of the coprecipitated Fe-ferrihydrite. Addition of both dissolved and coprecipitated C-glucuronic acid resulted in increased native SOM mineralization, but the reduced bioavailability of the coprecipitated versus dissolved C-glucuronic acid decreased the priming effect by 35%. In contrast, the addition of pure Fe-ferrihydrite resulted in negligible changes in native SOM mineralization. Our results show that iron mineral protection mechanisms are relevant for understanding the mobilization and degradation of SOM under reducing soil conditions.
已知土壤有机质(SOM)与铁矿物的结合限制了有氧土壤和沉积物中碳的迁移和降解。然而,在还原条件下,铁矿物保护机制的效果,即含铁矿物可能被用作末端电子受体,还知之甚少。在这里,我们通过向缺氧土壤悬浮液中添加溶解的 C-葡萄糖醛酸、Fe-水铁矿-C-葡萄糖醛酸共沉淀物或纯 Fe-水铁矿,来量化铁矿物保护抑制还原土壤中有机碳矿化的程度。在跟踪 C-葡萄糖醛酸和天然 SOM 的再分配和转化时,我们发现共沉淀在 2 周(25°C)后抑制了 56%的 C-葡萄糖醛酸矿化,而在 6 周后下降到 27%,这是由于共沉淀的 Fe-水铁矿持续还原溶解。添加溶解的和共沉淀的 C-葡萄糖醛酸都会导致天然 SOM 矿化增加,但共沉淀的 C-葡萄糖醛酸与溶解的 C-葡萄糖醛酸相比,生物利用度降低,使引发效应降低了 35%。相比之下,添加纯 Fe-水铁矿对天然 SOM 矿化几乎没有影响。我们的结果表明,铁矿物保护机制对于理解还原土壤条件下 SOM 的迁移和降解是相关的。
Environ Sci Technol. 2023-6-27
Environ Sci Process Impacts. 2024-9-18
Environ Sci Technol. 2024-6-18
Environ Sci Technol. 2018-10-2
Environ Sci Technol. 2021-8-3
Environ Sci Process Impacts. 2023-12-13
Environ Sci Technol. 2018-10-16
Environ Sci Technol. 2018-12-7
Environ Sci Technol. 2013-11-19
Environ Sci Process Impacts. 2024-9-18
Environ Sci Technol. 2019-11-13
Environ Sci Technol. 2019-7-17
Environ Sci Technol. 2018-10-16
Sci Total Environ. 2019-3-1
Environ Sci Technol. 2018-12-7