Xue Xinzhe, Feng Longsheng, Ren Qiu, Tran Cassidy, Eisenberg Samuel, Pinongcos Anica, Valdovinos Logan, Hsieh Cathleen, Heo Tae Wook, Worsley Marcus A, Zhu Cheng, Li Yat
Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
Nanomicro Lett. 2024 Jul 25;16(1):255. doi: 10.1007/s40820-024-01472-8.
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices (EESDs) by increasing surface area, thickness, and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity. However, conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients, limiting reaction kinetics. We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity. This free-standing device structure also avoids short-circuiting without needing a separator. The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion. Starting with a 3D-printed interpenetrated polymer substrate, we metallize it to make it conductive. This substrate has two individually addressable electrodes, allowing selective electrodeposition of energy storage materials. Using a Zn//MnO battery as a model system, the interpenetrated device outperforms conventional separate electrode configurations, improving volumetric energy density by 221% and exhibiting a higher capacity retention rate of 49% compared to 35% at temperatures from 20 to 0 °C. Our study introduces a new EESD architecture applicable to Li-ion, Na-ion batteries, supercapacitors, etc.
电极的结构设计通过增加表面积、厚度和活性材料质量负载,同时通过优化电极曲折度保持良好的离子扩散,为下一代电化学储能装置(EESD)提供了新的机遇。然而,传统的厚电极会增加离子扩散长度并导致更大的离子浓度梯度,从而限制反应动力学。我们展示了一种构建互穿结构的策略,该结构缩短了离子扩散长度并降低了离子浓度不均匀性。这种独立式器件结构还无需隔膜即可避免短路。互穿单元的特征尺寸和数量可在打印过程中进行调整,以平衡表面积和离子扩散。从3D打印的互穿聚合物基底开始,我们对其进行金属化处理以使其导电。该基底有两个可单独寻址的电极,允许对储能材料进行选择性电沉积。以Zn//MnO电池作为模型系统,互穿器件的性能优于传统的单独电极配置,在20至0°C的温度下,体积能量密度提高了221%,容量保持率更高,为49%,而传统配置为35%。我们的研究引入了一种适用于锂离子电池、钠离子电池、超级电容器等的新型EESD架构。