Suppr超能文献

ChatGPT 在定性研究中的自动化应用:内容分析。

ChatGPT for Automated Qualitative Research: Content Analysis.

机构信息

Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand.

School of Psychology, Deakin University, Burwood, Australia.

出版信息

J Med Internet Res. 2024 Jul 25;26:e59050. doi: 10.2196/59050.

Abstract

BACKGROUND

Data analysis approaches such as qualitative content analysis are notoriously time and labor intensive because of the time to detect, assess, and code a large amount of data. Tools such as ChatGPT may have tremendous potential in automating at least some of the analysis.

OBJECTIVE

The aim of this study was to explore the utility of ChatGPT in conducting qualitative content analysis through the analysis of forum posts from people sharing their experiences on reducing their sugar consumption.

METHODS

Inductive and deductive content analysis were performed on 537 forum posts to detect mechanisms of behavior change. Thorough prompt engineering provided appropriate instructions for ChatGPT to execute data analysis tasks. Data identification involved extracting change mechanisms from a subset of forum posts. The precision of the extracted data was assessed through comparison with human coding. On the basis of the identified change mechanisms, coding schemes were developed with ChatGPT using data-driven (inductive) and theory-driven (deductive) content analysis approaches. The deductive approach was informed by the Theoretical Domains Framework using both an unconstrained coding scheme and a structured coding matrix. In total, 10 coding schemes were created from a subset of data and then applied to the full data set in 10 new conversations, resulting in 100 conversations each for inductive and unconstrained deductive analysis. A total of 10 further conversations coded the full data set into the structured coding matrix. Intercoder agreement was evaluated across and within coding schemes. ChatGPT output was also evaluated by the researchers to assess whether it reflected prompt instructions.

RESULTS

The precision of detecting change mechanisms in the data subset ranged from 66% to 88%. Overall κ scores for intercoder agreement ranged from 0.72 to 0.82 across inductive coding schemes and from 0.58 to 0.73 across unconstrained coding schemes and structured coding matrix. Coding into the best-performing coding scheme resulted in category-specific κ scores ranging from 0.67 to 0.95 for the inductive approach and from 0.13 to 0.87 for the deductive approaches. ChatGPT largely followed prompt instructions in producing a description of each coding scheme, although the wording for the inductively developed coding schemes was lengthier than specified.

CONCLUSIONS

ChatGPT appears fairly reliable in assisting with qualitative analysis. ChatGPT performed better in developing an inductive coding scheme that emerged from the data than adapting an existing framework into an unconstrained coding scheme or coding directly into a structured matrix. The potential for ChatGPT to act as a second coder also appears promising, with almost perfect agreement in at least 1 coding scheme. The findings suggest that ChatGPT could prove useful as a tool to assist in each phase of qualitative content analysis, but multiple iterations are required to determine the reliability of each stage of analysis.

摘要

背景

数据分析方法,如定性内容分析,由于需要花费大量时间来检测、评估和编码大量数据,因此通常非常耗时和费力。ChatGPT 等工具在自动化至少部分分析方面可能具有巨大潜力。

目的

本研究旨在通过分析分享减少糖摄入量经验的论坛帖子,探讨 ChatGPT 在进行定性内容分析中的效用。

方法

对 537 个论坛帖子进行归纳和演绎内容分析,以检测行为改变的机制。通过深入的提示工程,为 ChatGPT 提供了适当的指令,以执行数据分析任务。数据识别涉及从帖子的子集提取变化机制。通过与人工编码的比较,评估提取数据的准确性。基于识别出的变化机制,使用数据驱动(归纳)和理论驱动(演绎)内容分析方法,利用 ChatGPT 开发了编码方案。演绎方法使用无约束编码方案和结构化编码矩阵,参考了理论领域框架。总共从一个数据子集创建了 10 个编码方案,然后将其应用于 10 个新对话中的完整数据集,每个对话的归纳和无约束演绎分析各进行了 10 次。总共进行了 10 次额外的对话,将完整数据集编码到结构化编码矩阵中。评估了跨编码方案和内部的编码方案之间的编码者间一致性。研究人员还评估了 ChatGPT 的输出,以评估其是否反映了提示说明。

结果

在数据子集中检测变化机制的精度范围为 66%至 88%。整体一致性κ分数在归纳编码方案中从 0.72 到 0.82 不等,在无约束编码方案和结构化编码矩阵中从 0.58 到 0.73 不等。将编码方案应用于表现最佳的编码方案,归纳方法的类别特异性κ分数范围为 0.67 至 0.95,演绎方法的 κ分数范围为 0.13 至 0.87。ChatGPT 在生成每个编码方案的描述方面基本遵循提示说明,尽管为归纳开发的编码方案的措辞比指定的要长。

结论

ChatGPT 在协助定性分析方面似乎相当可靠。ChatGPT 在开发从数据中出现的归纳编码方案方面表现优于适应现有框架的无约束编码方案,或直接编码到结构化矩阵中。ChatGPT 作为第二个编码者的潜力似乎也很有前景,至少在 1 个编码方案中达成了几乎完美的一致性。研究结果表明,ChatGPT 可能是一种有用的工具,可以帮助定性内容分析的每个阶段,但需要进行多次迭代才能确定分析的每个阶段的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e7e/11310599/a1aafbac65bd/jmir_v26i1e59050_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验