Suppr超能文献

在拟南芥中分析 Cas9 和 Cas12a 诱导的突变。

Profiling Cas9- and Cas12a-induced mutagenesis in Arabidopsis thaliana.

机构信息

Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands.

Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands.

出版信息

Plant J. 2024 Sep;119(6):2706-2717. doi: 10.1111/tpj.16943. Epub 2024 Jul 25.

Abstract

With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.

摘要

随着 CRISPR 技术的发展,全面了解双链断裂 (DSB) 形成后的修复机制对于提高遗传修饰的精度和效率非常重要。在植物遗传学中,广泛使用两种 Cas 核酸酶,即 Cas9 和 Cas12a,它们在 PAM 序列组成、DSB 相对于 PAM 的位置以及 DSB 末端结构(平齐或交错)方面存在差异。这种差异导致了对不同修复和重组选择的推测。在这里,我们使用以前报道的 Cas9 诱导的 DSB 相同的实验设置,为拟南芥中的 LbCas12a 提供了详细的修复谱,从而可以对这两种核酸酶进行定量比较。对于这两种酶,非同源末端连接 (NHEJ) 产生 70%的突变,而聚合酶 theta 介导的末端连接 (TMEJ) 产生 30%,表明 DSB 末端结构不决定修复途径的选择。对于旨在整合外源 DNA 的基因组工程方法,我们发现 Cas12a 与 Cas9 一样刺激 T-DNA 分子的整合。Cas9 和 Cas12a 修复结果的长读测序进一步揭示了 TMEJ 导致的 DNA 丢失程度之前被低估。Cas9 和 Cas12a 修复谱之间最显著的差异是 NHEJ 对具有短突出端的 DSB 末端的作用:非对称 Cas9 切割产生 1 bp 插入,我们在这里表明这取决于聚合酶 Lambda,而交错 Cas12a DSB 不受填充合成的影响。我们得出结论,Cas9 和 Cas12a 对于基因组工程目的同样有效,根据兼容的 PAM 序列的可用性,在核酸酶选择方面提供了灵活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验