Suppr超能文献

精氨酸甲基化增强 FUS 相分离与 SMN 共同促进神经元颗粒形成。

Arginine methylation-enabled FUS phase separation with SMN contributes to neuronal granule formation.

机构信息

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.

出版信息

Cell Rep. 2024 Aug 27;43(8):114537. doi: 10.1016/j.celrep.2024.114537. Epub 2024 Jul 24.

Abstract

Various ribonucleoprotein complexes (RNPs) often function in the form of membraneless organelles derived from multivalence-driven liquid-liquid phase separation (LLPS). Post-translational modifications, such as phosphorylation and arginine methylation, govern the assembly and disassembly of membraneless organelles. This study reveals that asymmetric dimethylation of arginine can create extra binding sites for multivalent Tudor domain-containing proteins like survival of motor neuron (SMN) protein, thereby lowering the threshold for LLPS of RNPs, such as fused in sarcoma (FUS). Accordingly, FUS hypomethylation or knockdown of SMN disrupts the formation and transport of neuronal granules in axons. Wild-type SMN, but not the spinal muscular atrophy-associated form of SMN, SMN-Δ7, rescues neuronal defects due to SMN knockdown. Importantly, a fusion of SMN-Δ7 to an exogenous oligomeric protein is sufficient to rescue axon length defects caused by SMN knockdown. Our findings highlight the significant role of arginine methylation-enabled multivalent interactions in LLPS and suggest their potential impact on various aspects of neuronal activities in neurodegenerative diseases.

摘要

各种核糖核蛋白复合物(RNPs)通常以多价驱动的液-液相分离(LLPS)产生的无膜细胞器的形式发挥作用。翻译后修饰,如磷酸化和精氨酸甲基化,控制着无膜细胞器的组装和拆卸。本研究揭示了精氨酸的不对称二甲基化可以为生存运动神经元(SMN)蛋白等多价 Tudor 结构域蛋白创造额外的结合位点,从而降低 RNPs 如融合肉瘤(FUS)的 LLPS 阈值。因此,FUS 低甲基化或 SMN 敲低会破坏神经元颗粒在轴突中的形成和运输。野生型 SMN,但不是与脊髓性肌萎缩症相关的 SMN-Δ7 形式,可以挽救由于 SMN 敲低引起的神经元缺陷。重要的是,SMN-Δ7 与外源性寡聚蛋白的融合足以挽救由于 SMN 敲低引起的轴突长度缺陷。我们的发现强调了精氨酸甲基化介导的多价相互作用在 LLPS 中的重要作用,并表明它们可能对神经退行性疾病中神经元活动的各个方面产生影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验