Suppr超能文献

用于多视网膜疾病早期检测的深度学习框架。

A deep learning framework for the early detection of multi-retinal diseases.

机构信息

Department of Information and Technology, University of Gujrat, Gujrat, Punjab, Pakistan.

Department of Computer Science, The University of Chenab, Gujrat, Punjab, Pakistan.

出版信息

PLoS One. 2024 Jul 25;19(7):e0307317. doi: 10.1371/journal.pone.0307317. eCollection 2024.

Abstract

Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images.

摘要

视网膜图像通过眼科医生对各种眼部疾病的诊断起着关键作用。通过深度学习算法对眼底视网膜图像进行广泛研究,实现早期检测和及时治疗。深度学习模型能够快速处理图像并即时提供结果,从而促进快速诊断和治疗计划。我们的研究旨在使用卷积神经网络(CNN)为早期检测和及时治疗眼部疾病提供一种非侵入性方法。我们使用了一个名为视网膜多疾病图像数据集(RFMiD)的数据集,其中包含各种类别代表不同眼部疾病的眼底图像,包括 Media Haze(MH)、Optic Disc Cupping(ODC)、糖尿病视网膜病变(DR)和健康图像(WNL)。我们应用了几种预处理技术来提高模型的性能,例如数据增强、裁剪、调整大小、数据集分割、将图像转换为数组以及独热编码。CNN 从输入彩色眼底图像中提取相关特征。这些提取的特征用于做出预测性诊断决策。在本文中,使用了三个 CNN 模型进行实验。使用统计指标(如准确性、F1 分数、召回率和精度)评估模型的性能。基于结果,开发的框架在经过数据增强后,使用 12 层 CNN 对验证集的准确率达到 89.81%,对测试集的准确率达到 88.72%,表现出了有前途的性能。经过数据增强,20 层 CNN 的准确率为验证集 90.34%,测试集 89.59%。20 层 CNN 的准确率更高,但该模型显示出过拟合的现象。这些准确率表明,深度学习模型已经学会了有效地区分不同的眼部疾病类别和健康图像。本研究的贡献在于通过对彩色眼底图像的分析,提供了一种可靠且高效的诊断系统,用于同时检测多种眼部疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdcd/11271906/2da98e1bab28/pone.0307317.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验