Suppr超能文献

深度卷积神经网络集成比有董事会认证的眼科医生更准确可靠,能够检测视网膜眼底照片中的多种疾病。

Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs.

机构信息

School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.

Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.

出版信息

Br J Ophthalmol. 2024 Feb 21;108(3):417-423. doi: 10.1136/bjo-2022-322183.

Abstract

AIMS

To develop an algorithm to classify multiple retinal pathologies accurately and reliably from fundus photographs and to validate its performance against human experts.

METHODS

We trained a deep convolutional ensemble (DCE), an ensemble of five convolutional neural networks (CNNs), to classify retinal fundus photographs into diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD) and normal eyes. The CNN architecture was based on the InceptionV3 model, and initial weights were pretrained on the ImageNet dataset. We used 43 055 fundus images from 12 public datasets. Five trained ensembles were then tested on an 'unseen' set of 100 images. Seven board-certified ophthalmologists were asked to classify these test images.

RESULTS

Board-certified ophthalmologists achieved a mean accuracy of 72.7% over all classes, while the DCE achieved a mean accuracy of 79.2% (p=0.03). The DCE had a statistically significant higher mean F1-score for DR classification compared with the ophthalmologists (76.8% vs 57.5%; p=0.01) and greater but statistically non-significant mean F1-scores for glaucoma (83.9% vs 75.7%; p=0.10), AMD (85.9% vs 85.2%; p=0.69) and normal eyes (73.0% vs 70.5%; p=0.39). The DCE had a greater mean agreement between accuracy and confident of 81.6% vs 70.3% (p<0.001).

DISCUSSION

We developed a deep learning model and found that it could more accurately and reliably classify four categories of fundus images compared with board-certified ophthalmologists. This work provides proof-of-principle that an algorithm is capable of accurate and reliable recognition of multiple retinal diseases using only fundus photographs.

摘要

目的

开发一种算法,能够从眼底照片中准确可靠地分类多种视网膜病变,并验证其性能优于人类专家。

方法

我们训练了一个深度卷积集成(DCE),即五个卷积神经网络(CNN)的集成,以将眼底照片分类为糖尿病视网膜病变(DR)、青光眼、年龄相关性黄斑变性(AMD)和正常眼。CNN 架构基于 InceptionV3 模型,初始权重在 ImageNet 数据集上进行了预训练。我们使用了来自 12 个公共数据集的 43055 张眼底图像。然后,将五个训练好的集成在 100 张“未见过”的图像集上进行测试。七位有资质的眼科医生被要求对这些测试图像进行分类。

结果

有资质的眼科医生对所有类别总体准确率为 72.7%,而 DCE 的准确率为 79.2%(p=0.03)。与眼科医生相比,DCE 在 DR 分类方面的平均 F1 得分具有统计学意义上的显著提高(76.8%对 57.5%;p=0.01),在青光眼(83.9%对 75.7%;p=0.10)、AMD(85.9%对 85.2%;p=0.69)和正常眼(73.0%对 70.5%;p=0.39)方面的平均 F1 得分也有所提高,但统计学上不显著。DCE 在准确率和置信度之间的平均一致性更高,为 81.6%对 70.3%(p<0.001)。

讨论

我们开发了一种深度学习模型,发现与有资质的眼科医生相比,它可以更准确和可靠地对四类眼底图像进行分类。这项工作提供了一个初步的证据,证明算法仅使用眼底照片就能够准确可靠地识别多种视网膜疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19b/10894841/1bb05ee5cd0a/bjo-2022-322183f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验