Suppr超能文献

一种用于多类视网膜疾病筛查的轻量级卷积神经网络与可解释人工智能

A Lightweight CNN for Multiclass Retinal Disease Screening with Explainable AI.

作者信息

Arnob Arjun Kumar Bose, Chayon Muhammad Hasibur Rashid, Al Farid Fahmid, Husen Mohd Nizam, Ahmed Firoz

机构信息

Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.

Faculty of Computer Science and Informatics, Berlin School of Business and Innovation, 12043 Berlin, Germany.

出版信息

J Imaging. 2025 Aug 15;11(8):275. doi: 10.3390/jimaging11080275.

Abstract

Timely, balanced, and transparent detection of retinal diseases is essential to avert irreversible vision loss; however, current deep learning screeners are hampered by class imbalance, large models, and opaque reasoning. This paper presents a lightweight attention-augmented convolutional neural network (CNN) that addresses all three barriers. The network combines depthwise separable convolutions, squeeze-and-excitation, and global-context attention, and it incorporates gradient-based class activation mapping (Grad-CAM) and Grad-CAM++ to ensure that every decision is accompanied by pixel-level evidence. A 5335-image ten-class color-fundus dataset from Bangladeshi clinics, which was severely skewed (17-1509 images per class), was equalized using a synthetic minority oversampling technique (SMOTE) and task-specific augmentations. Images were resized to 150×150 px and split 70:15:15. The training used the adaptive moment estimation (Adam) optimizer (initial learning rate of 1×10-4, reduce-on-plateau, early stopping), ℓ2 regularization, and dual dropout. The 16.6 M parameter network converged in fewer than 50 epochs on a mid-range graphics processing unit (GPU) and reached 87.9% test accuracy, a macro-precision of 0.882, a macro-recall of 0.879, and a macro-F1-score of 0.880, reducing the error by 58% relative to the best ImageNet backbone (Inception-V3, 40.4% accuracy). Eight disorders recorded true-positive rates above 95%; macular scar and central serous chorioretinopathy attained F1-scores of 0.77 and 0.89, respectively. Saliency maps consistently highlighted optic disc margins, subretinal fluid, and other hallmarks. Targeted class re-balancing, lightweight attention, and integrated explainability, therefore, deliver accurate, transparent, and deployable retinal screening suitable for point-of-care ophthalmic triage on resource-limited hardware.

摘要

及时、平衡且透明地检测视网膜疾病对于避免不可逆的视力丧失至关重要;然而,当前的深度学习筛查工具受到类别不平衡、模型庞大和推理不透明的阻碍。本文提出了一种轻量级注意力增强卷积神经网络(CNN),该网络解决了所有这三个障碍。该网络结合了深度可分离卷积、挤压激励和全局上下文注意力,并融入了基于梯度的类激活映射(Grad-CAM)和Grad-CAM++,以确保每个决策都伴有像素级证据。使用合成少数类过采样技术(SMOTE)和特定任务增强对来自孟加拉国诊所的一个包含5335张图像的十类彩色眼底数据集进行了均衡处理,该数据集严重不均衡(每类17 - 1509张图像)。图像被调整为150×150像素,并按70:15:15进行分割。训练使用了自适应矩估计(Adam)优化器(初始学习率为1×10 - 4,基于性能下降调整学习率,提前停止)、ℓ2正则化和双重随机失活。这个具有1660万个参数的网络在一个中等性能的图形处理单元(GPU)上不到50个轮次就收敛了,测试准确率达到87.9%,宏精度为0.882,宏召回率为0.879,宏F1分数为0.880,相对于最佳的ImageNet主干网络(Inception-V3,准确率40.4%),误差降低了58%。八种疾病的真阳性率高于95%;黄斑瘢痕和中心性浆液性脉络膜视网膜病变的F1分数分别达到0.77和0.89。显著性图始终突出显示视盘边缘、视网膜下液和其他特征。因此,有针对性的类别重新平衡、轻量级注意力和集成的可解释性能够提供准确、透明且可部署的视网膜筛查,适用于在资源有限的硬件上进行即时护理眼科分诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6295/12387214/4c14c1240276/jimaging-11-00275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验