Institut für Zell- und Neurobiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
PLoS One. 2024 Jul 25;19(7):e0304658. doi: 10.1371/journal.pone.0304658. eCollection 2024.
Polyamines (PAs) including putrescine (PUT), spermidine (SPD) and spermine (SPM) are small, versatile molecules with two or more positively charged amino groups. Despite their importance for almost all forms of life, their specific roles in molecular and cellular biology remain partly unknown. The molecular structures of PAs suggest two presumable biological functions: (i) as potential buffer systems and (ii) as interactants with poly-negatively charged molecules like nucleic acids. The present report focuses on the question, whether the molecular structures of PAs are essential for such functions, or whether other simple molecules like small peptides with closely spaced positively charged side chains might be suitable as well. Consequently, we created titration curves for PUT, SPD, and SPM, as well as for oligolysines like tri-, tetra-, and penta-lysine. None of the molecules provided substantial buffering capacity at physiological intracellular pH values. Apparently, the most important mechanism for intracellular pH homeostasis in neurons is not a buffer system but is provided by the actions of the sodium-hydrogen and the bicarbonate-chloride antiporters. In a similar approach we investigated the interaction with DNA by following the extinction at 260 nm when titrating DNA with the above molecules. Again, PUT and tri-lysine were not able to interact with herring sperm DNA, while SPD and SPM were. Obviously, the presence of several positively charged groups on its own is not sufficient for the interaction with nucleic acids. Instead, the precise spacing of these groups is necessary for biological activity.
多胺(PAs)包括腐胺(PUT)、亚精胺(SPD)和精胺(SPM),是带有两个或多个正电荷氨基的小而多功能分子。尽管它们对几乎所有形式的生命都很重要,但它们在分子和细胞生物学中的具体作用仍部分未知。PAs 的分子结构表明了两个可能的生物学功能:(i)作为潜在的缓冲系统,以及(ii)作为与多负电荷分子如核酸相互作用的物质。本报告重点探讨了以下问题:PAs 的分子结构对于这些功能是否至关重要,或者其他简单分子如带有紧密间隔正电荷侧链的小肽是否也可以作为替代品。因此,我们创建了 PUT、SPD 和 SPM 以及三、四、五聚赖氨酸等寡聚赖氨酸的滴定曲线。在生理细胞内 pH 值下,没有一种分子提供了实质性的缓冲能力。显然,神经元细胞内 pH 稳态的最重要机制不是缓冲系统,而是由钠-氢和碳酸氢盐-氯反向转运蛋白的作用提供的。我们以类似的方法通过在滴定 DNA 时跟踪 260nm 的吸光度来研究与 DNA 的相互作用。同样,PUT 和三赖氨酸不能与鲱鱼精子 DNA 相互作用,而 SPD 和 SPM 则可以。显然,自身带有几个正电荷基团不足以与核酸相互作用。相反,这些基团的精确间隔对于生物活性是必要的。