Institut für Zell- und Neurobiologie, Centrum 2, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA.
Biomolecules. 2022 Mar 25;12(4):501. doi: 10.3390/biom12040501.
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
多胺(PAs)是具有两个或更多含氮正电荷基团的小而多功能分子,提供广泛的生物学功能。这些方面大多是众所周知的,并被相当多的优秀综述所涵盖。在这里,本综述包括新的方面和问题:(1)总结了大多数天然和一些重要合成 PAs 的作用。(2)描述了在通过排便丢失 PAs 后,从营养和细菌生产中摄取 PAs 的肠道系统。(3)强调了肠道腔中 PAs 浓度高而其在血浆和脑脊液中浓度低之间的差异,而细胞质中的浓度要高得多。(4)本综述为 Pas 的生物合成提供了一个新颖而完整的方案,包括甘氨酸、谷氨酸、脯氨酸和其他作为 PA 前体,并提出了一个假设,即当 ODC 敲除似乎致命时,胍丁胺途径可能会挽救腐胺的产生(解决文献中的明显矛盾)。(5)总结了关于脑胶质细胞中 PA 转运的新数据,解释了为什么这些细胞而不是神经元优先积累 PAs。(6)最后,它提供了一个新颖而完整的 PA 相互转化方案,包括亚精胺、腐胺和 GABA(独特的神经递质)作为终产物。总之,本综述可以作为理解 PA 奥秘的最新贡献。