Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Poznan, Poland.
Space Informatics Lab, Department of Geography and GIS, University of Cincinnati, Cincinnati, OH, United States of America.
PLoS One. 2024 Jul 25;19(7):e0307745. doi: 10.1371/journal.pone.0307745. eCollection 2024.
Racial geography studies the spatial distributions of multiracial populations. Technical challenges arise from the fact that US Census data, upon which all US-based studies rely, is only available in the form of spatial aggregates at a few levels of granularity. This negatively affects spatial analysis and, consequently, the quantification of racial segregation, especially on a smaller length scale. A recent methodology called the Racial Landscape (RL) stochastically disaggregates racial data at the level of census block aggregates into a grid of monoracial cells. RL-transformed racial data makes possible pattern-based, zoneless analysis, and visualization of racial geography. Here, we introduce the National Racial Geography Dataset 2020 (NRGD2020)-a collection of RL-based grids calculated from the 2020 census data and covering the entire conterminous US. It includes a virtual image layer for a bird's-eye-like view visualization of the spatial distribution of racial sub-populations, numerical grids for calculating racial diversity and segregation within user-defined regions, and precalculated maps of racial diversity and segregation on various length scales. NRGD2020 aims to facilitate and extend spatial analyses of racial geography and to make it more interpretable by tightly integrating quantitative analysis with visualization (mapping).
种族地理学研究多民族人口的空间分布。技术挑战源于这样一个事实,即所有基于美国的研究都依赖的美国人口普查数据仅以几种粒度级别的空间聚合形式提供。这对空间分析产生了负面影响,从而影响了种族隔离的量化,尤其是在较小的规模尺度上。最近的一种名为“种族景观”(RL)的方法将种族数据从人口普查块聚合的层面上随机地分解为单种族单元的网格。RL 转换后的种族数据使得基于模式的、无分区的分析以及种族地理学的可视化成为可能。在这里,我们引入了 2020 年全国种族地理数据集(NRGD2020)——这是一个从 2020 年人口普查数据中计算得出的基于 RL 的网格集合,涵盖了整个美国本土。它包括一个虚拟图像层,用于鸟瞰式查看种族亚群体的空间分布,以及用于计算用户定义区域内种族多样性和隔离的数值网格,以及各种规模上的种族多样性和隔离的预计算地图。NRGD2020 旨在促进和扩展种族地理学的空间分析,并通过将定量分析与可视化(制图)紧密结合来使其更具可解释性。