Suppr超能文献

Compound-SNE:用于多单细胞组学数据可视化的t-SNE比较比对

Compound-SNE: Comparative alignment of t-SNEs for multiple single-cell omics data visualisation.

作者信息

Cess Colin G, Haghverdi Laleh

机构信息

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.

出版信息

Bioinformatics. 2024 Jul 25;40(7). doi: 10.1093/bioinformatics/btae471.

Abstract

SUMMARY

One of the first steps in single-cell omics data analysis is visualization, which allows researchers to see how well-separated cell-types are from each other. When visualizing multiple datasets at once, data integration/batch correction methods are used to merge the datasets. While needed for downstream analyses, these methods modify features space (e.g. gene expression)/PCA space in order to mix cell-types between batches as well as possible. This obscures sample-specific features and breaks down local embedding structures that can be seen when a sample is embedded alone. Therefore, in order to improve in visual comparisons between large numbers of samples (e.g., multiple patients, omic modalities, different time points), we introduce Compound-SNE, which performs what we term a soft alignment of samples in embedding space. We show that Compound-SNE is able to align cell-types in embedding space across samples, while preserving local embedding structures from when samples are embedded independently.

AVAILABILITY AND IMPLEMENTATION

Python code for Compound-SNE is available for download at https://github.com/HaghverdiLab/Compound-SNE.

SUPPLEMENTARY INFORMATION

Available online. Provides algorithmic details and additional tests.

摘要

摘要

单细胞组学数据分析的首要步骤之一是可视化,它能让研究人员了解细胞类型之间的分离程度。在同时可视化多个数据集时,会使用数据整合/批次校正方法来合并数据集。虽然这些方法是下游分析所必需的,但它们会修改特征空间(如基因表达)/主成分分析(PCA)空间,以便尽可能地混合批次间的细胞类型。这会掩盖样本特异性特征,并破坏单独嵌入样本时可见的局部嵌入结构。因此,为了改进大量样本(如多个患者、组学模式、不同时间点)之间的视觉比较,我们引入了复合随机邻域嵌入(Compound-SNE),它在嵌入空间中对样本进行我们所称的软对齐。我们表明,Compound-SNE能够在嵌入空间中跨样本对齐细胞类型,同时保留样本独立嵌入时的局部嵌入结构。

可用性与实现

Compound-SNE的Python代码可在https://github.com/HaghverdiLab/Compound-SNE下载。

补充信息

可在线获取。提供了算法细节和额外测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/439e/11290359/2e7958150cf8/btae471f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验