Suppr超能文献

基于网络的聊天机器人在COVID-19大流行期间指导医院员工重返工作岗位的实施:开发与前后评估

Implementation of a Web-Based Chatbot to Guide Hospital Employees in Returning to Work During the COVID-19 Pandemic: Development and Before-and-After Evaluation.

作者信息

Unlu Ozan, Pikcilingis Aaron, Letourneau Jonathan, Landman Adam, Patel Rajesh, Shenoy Erica S, Hashimoto Dean, Kim Marvel, Pellecer Johnny, Zhang Haipeng

机构信息

Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, United States.

Mass General Brigham, Boston, MA, United States.

出版信息

JMIR Form Res. 2024 Jul 25;8:e43119. doi: 10.2196/43119.

Abstract

BACKGROUND

Throughout the COVID-19 pandemic, multiple policies and guidelines were issued and updated for health care personnel (HCP) for COVID-19 testing and returning to work after reporting symptoms, exposures, or infection. The high frequency of changes and complexity of the policies made it difficult for HCP to understand when they needed testing and were eligible to return to work (RTW), which increased calls to Occupational Health Services (OHS), creating a need for other tools to guide HCP. Chatbots have been used as novel tools to facilitate immediate responses to patients' and employees' queries about COVID-19, assess symptoms, and guide individuals to appropriate care resources.

OBJECTIVE

This study aims to describe the development of an RTW chatbot and report its impact on demand for OHS support services during the first Omicron variant surge.

METHODS

This study was conducted at Mass General Brigham, an integrated health care system with over 80,000 employees. The RTW chatbot was developed using an agile design methodology. We mapped the RTW policy into a unified flow diagram that included all required questions and recommendations, then built and tested the chatbot using the Microsoft Azure Healthbot Framework. Using chatbot data and OHS call data from December 10, 2021, to February 17, 2022, we compared OHS resource use before and after the deployment of the RTW chatbot, including the number of calls to the OHS hotline, wait times, call length, and time OHS hotline staff spent on the phone. We also assessed Centers for Disease Control and Prevention data for COVID-19 case trends during the study period.

RESULTS

In the 5 weeks post deployment, 5575 users used the RTW chatbot with a mean interaction time of 1 minute and 17 seconds. The highest engagement was on January 25, 2022, with 368 users, which was 2 weeks after the peak of the first Omicron surge in Massachusetts. Among users who completed all the chatbot questions, 461 (71.6%) met the RTW criteria. During the 10 weeks, the median (IQR) number of daily calls that OHS received before and after deployment of the chatbot were 633 (251-934) and 115 (62-167), respectively (U=163; P<.001). The median time from dialing the OHS phone number to hanging up decreased from 28 minutes and 22 seconds (IQR 25:14-31:05) to 6 minutes and 25 seconds (IQR 5:32-7:08) after chatbot deployment (U=169; P<.001). Over the 10 weeks, the median time OHS hotline staff spent on the phone declined from 3 hours and 11 minutes (IQR 2:32-4:15) per day to 47 (IQR 42-54) minutes (U=193; P<.001), saving approximately 16.8 hours per OHS staff member per week.

CONCLUSIONS

Using the agile methodology, a chatbot can be rapidly designed and deployed for employees to efficiently receive guidance regarding RTW that complies with the complex and shifting RTW policies, which may reduce use of OHS resources.

摘要

背景

在整个新冠疫情期间,针对医护人员(HCP)进行新冠病毒检测以及在出现症状、接触病毒或感染后复工的相关事宜,发布并更新了多项政策和指南。政策变化频繁且复杂,使得医护人员难以理解何时需要进行检测以及何时有资格复工(RTW),这导致拨打职业健康服务(OHS)热线的次数增加,因此需要其他工具来指导医护人员。聊天机器人已被用作新型工具,以促进对患者和员工关于新冠病毒问题的即时回复、评估症状并引导个人获取适当的医疗资源。

目的

本研究旨在描述一个复工聊天机器人的开发过程,并报告其在首次奥密克戎变异株激增期间对职业健康服务支持需求的影响。

方法

本研究在拥有超过80000名员工的综合医疗系统麻省总医院布莱根分院进行。复工聊天机器人采用敏捷设计方法开发。我们将复工政策映射到一个统一的流程图中,该流程图包含所有必需的问题和建议,然后使用微软Azure Healthbot框架构建并测试聊天机器人。利用2021年12月10日至2022年2月17日的聊天机器人数据和职业健康服务热线电话数据,我们比较了复工聊天机器人部署前后职业健康服务资源的使用情况,包括拨打职业健康服务热线的次数、等待时间、通话时长以及职业健康服务热线工作人员的通话时间。我们还评估了研究期间疾病控制与预防中心的新冠病毒病例趋势数据。

结果

在部署后的5周内,5575名用户使用了复工聊天机器人,平均交互时间为1分17秒。参与度最高的是2022年1月25日,有368名用户,这是在马萨诸塞州首次奥密克戎激增高峰后的2周。在完成所有聊天机器人问题的用户中,461名(71.6%)符合复工标准。在这10周内,职业健康服务部门在聊天机器人部署前后每天接到的电话中位数(四分位间距)分别为633(251 - 934)和115(62 - 167)(U = 163;P <.001)。聊天机器人部署后,从拨打职业健康服务电话号码到挂断电话的时间中位数从28分22秒(四分位间距25:14 - 31:05)降至6分25秒(四分位间距5:32 - 7:08)(U = 169;P <.001)。在这10周内,职业健康服务热线工作人员的通话时间中位数从每天3小时11分钟(四分位间距2:32 - 4:15)降至47分钟(四分位间距42 - 54)(U = 193;P <.001),每位职业健康服务工作人员每周节省约16.8小时。

结论

采用敏捷方法,可以快速设计和部署聊天机器人,以便员工能够高效地获得符合复杂多变的复工政策的复工指导,这可能会减少职业健康服务资源的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75ec/11310642/8f5b550f1286/formative_v8i1e43119_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验