Suppr超能文献

揭示β-酪蛋白与白杨素、芹菜素和木樨草素结合的机制,并通过分子对接和分子动力学定位其结合口袋。

Revealing binding mechanism of β-casein to chrysin, apigenin, and luteolin and locating its binding pockets by molecular docking and molecular dynamics.

机构信息

Department of Chemistry, Faculty of Science, Ilam University, P. O. Box: 69315516, Ilam, Iran.

Department of Chemistry, Faculty of Science, Ilam University, P. O. Box: 69315516, Ilam, Iran.

出版信息

Biochem Biophys Res Commun. 2024 Nov 12;733:150438. doi: 10.1016/j.bbrc.2024.150438. Epub 2024 Jul 23.

Abstract

Revealing the interaction mechanism of proteins with bioactive molecules and the location of their binding pockets is crucial for predicting the structure-function relationship of proteins in drug discovery and design. Despite some published papers on the interaction of β-casein with small bioactive molecules, the ambiguity of the location and constituent amino acids of β-casein binding pockets prompted us to identify them by in silico simulation of its interaction with three polyphenols, chrysin, apigenin, and luteolin. Molecular docking revealed that the primary β-casein binding pocket for chrysin consists of five nonpolar amino acids (Leu73, Phe77, Pro80, Ile89, and Pro196), three polar neutral amino acids (Ser137, Gln138, and Gln197), and two polar charged amino acids (Glu136, and Arg198). For β-casein/apigenin and β-casein/luteolin complexes, Asn83 also contributes to forming the pocket. Molecular dynamics provided more details, such as the relative contribution of determinative amino acids and the role of various forces. For example, we found that Glu210, Glu132, and Glu35 are the most destructive residues in the binding of chrysin, apigenin, and luteolin to β-casein, respectively. Also, we observed that hydrophobic forces mainly stabilize β-casein/chrysin and β-casein/apigenin, and polar solvation (including hydrogen bonds) stabilizes β-casein/luteolin, all by spontaneous processes.

摘要

揭示蛋白质与生物活性分子的相互作用机制以及它们结合口袋的位置对于预测蛋白质在药物发现和设计中的结构-功能关系至关重要。尽管已经有一些关于β-酪蛋白与小分子生物活性分子相互作用的发表论文,但β-酪蛋白结合口袋的位置和组成氨基酸存在模糊性,促使我们通过其与三种多酚(白杨素、芹菜素和木樨草素)相互作用的计算机模拟来确定它们。分子对接表明,白杨素与β-酪蛋白的主要结合口袋由五个非极性氨基酸(Leu73、Phe77、Pro80、Ile89 和 Pro196)、三个极性中性氨基酸(Ser137、Gln138 和 Gln197)和两个极性带电氨基酸(Glu136 和 Arg198)组成。对于β-酪蛋白/芹菜素和β-酪蛋白/木樨草素复合物,Asn83 也有助于形成口袋。分子动力学提供了更多细节,例如决定性氨基酸的相对贡献和各种力的作用。例如,我们发现 Glu210、Glu132 和 Glu35 分别是白杨素、芹菜素和木樨草素与β-酪蛋白结合的最具破坏性残基。此外,我们观察到疏水作用力主要稳定β-酪蛋白/白杨素和β-酪蛋白/芹菜素,而极性溶剂化(包括氢键)稳定β-酪蛋白/木樨草素,所有这些都是自发过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验