Suppr超能文献

人工智能辅助乳腺癌 HER2 免疫组化评估:系统评价和荟萃分析。

Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis.

机构信息

Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China.

Medical Affairs Department, Betrue AI Lab, Guangzhou 510700, China.

出版信息

Pathol Res Pract. 2024 Aug;260:155472. doi: 10.1016/j.prp.2024.155472. Epub 2024 Jul 16.

Abstract

Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92-0.99] and 0.92 [0.80-0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50-0.92] and 0.98 [0.93-0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98-1.00] and specificity of 0.99 [0.97-1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.

摘要

准确评估肿瘤组织中的 HER2 表达对于确定 HER2 靶向治疗方案至关重要。然而,与自动化、基于计算机的评估相比,病理学家对 HER2 状态的评估不够客观。人工智能(AI)有望提高 HER2 解读的准确性和重现性。本研究旨在系统评估当前用于 HER2 免疫组织化学诊断的 AI 算法,为指导开发更具适应性的算法提供见解,以应对不断变化的 HER2 评估实践。使用主题词和自由文本的组合,对 PubMed、Embase、Cochrane 和 Web of Science 数据库进行了全面的数据检索。从开始到 2023 年 9 月,共检索到 4994 篇描述乳腺癌中 HER2 表达的计算病理学文章。在应用预先确定的纳入和排除标准后,选择了 7 项研究。这 7 项研究共包含 6867 项 HER2 识别任务,其中 2 项研究采用了 HER2-CONNECT 算法,2 项研究采用了 CNN 算法,1 项研究采用了多类逻辑回归算法,2 项研究采用了 HER2 4B5 算法。AI 用于区分 HER2 0/1+的敏感性和特异性分别为 0.98[0.92-0.99]和 0.92[0.80-0.97]。用于区分 HER2 2+时,敏感性和特异性分别为 0.78[0.50-0.92]和 0.98[0.93-0.99]。对于 HER2 3+的区分,AI 表现出 0.99[0.98-1.00]的敏感性和 0.99[0.97-1.00]的特异性。此外,由于过去 HER2 阴性患者缺乏 HER2 靶向治疗药物,病理学家可能忽略了 HER2 0 与 1+之间的区分,这为人工智能(AI)在这一分化中的表现提供了改进空间。人工智能在 HER2 免疫组化评估的自动化方面表现出色,尽管在不同 HER2 状态下的性能略有差异,但仍取得了有希望的结果。尽管将 AI 算法纳入 HER2 评估的病理工作流程在标准化、应用模式和伦理考虑方面存在挑战,但不断取得的进展表明,它有望成为病理学家在不久的将来临床实践中的一种广泛有效的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验