Suppr超能文献

影响人表皮生长因子受体2解读一致性的因素的系统分析:染色方案、基于人工智能的图像标准化及分类标准

Systematic Analysis of Factors Affecting Human Epidermal Growth Factor Receptor 2 Interpretation Consistency: Staining Protocols, Artificial Intelligence-Based Image Standardization, and Classification Criteria.

作者信息

Jiang Chen, Li Mei, Zheng Chengyou, Yan Shumei, Kong Lingzhi, Wu Yu, Zhang Jinhui, Chao Xue, Cai Xi, Feng Wentai, He Jiehua, Luo Rongzhen, Xu Shuoyu, Yang Yuanzhong, Sun Peng

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China.

出版信息

Lab Invest. 2025 Jun;105(6):104134. doi: 10.1016/j.labinv.2025.104134. Epub 2025 Mar 23.

Abstract

The efficacy of human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugates has underscored the critical need for precise HER2 diagnostics in breast cancer treatment. Despite the clinical importance, variability in immunohistochemical (IHC) staining protocols and interobserver inconsistencies challenge the reliability of HER2 status assessment, which is critical for guiding patient treatment strategies. To investigate the factors affecting HER2 interpretation consistency, tissue microarrays from 1063 breast carcinoma cases underwent 3 distinct IHC protocols, and a novel artificial intelligence (AI) model was developed to standardize HER2-stained images. A total of 5 sets of tissue microarrays (Nordi QC, protocol 1, protocol 2, protocol 1 AI, and protocol 2 AI) were independently reviewed by 8 pathologists. The Fleiss Kappa value and overall agreement rate measured interobserver agreement, with logistic regression analyzing the impact of variables on diagnostic accuracy. Our results showed that the Nordi QC protocol had the highest interobserver agreement (Kappa 0.754). AI-based image normalization notably enhanced consistency, particularly for HER2 low cases, aligning scores toward the Nordi QC standard. Logistic regression analysis indicated that both staining protocol and AI-based image standardization significantly influenced diagnostic accuracy (P < .001). The American Society of Clinical Oncology/College of American Pathologists 2018 binary criteria demonstrated the highest HER2 interobserver consistency (Kappa > 0.95). Compared with the American Society of Clinical Oncology/College of American Pathologists 2023 criteria, the newly proposed null, ultra-low/low, positive criteria, merging HER2 low and ultra-low categories, demonstrated improved reliability and agreement, especially in distinguishing the challenging HER2-ultra-low cases, which showed an exceedingly low interobserver agreement (Kappa < 0.20) across all protocols. Overall, variability in IHC staining protocols and HER2 classification criteria significantly affect the diagnostic consistency among pathologists. The integration of an AI model for image standardization and the adoption of the null, ultra-low/low, positive criteria may refine diagnostic precision and bolster clinical decision-making in breast cancer treatment.

摘要

靶向人表皮生长因子受体2(HER2)的抗体药物偶联物的疗效凸显了在乳腺癌治疗中进行精确HER2诊断的迫切需求。尽管具有临床重要性,但免疫组织化学(IHC)染色方案的变异性和观察者间的不一致性对HER2状态评估的可靠性构成挑战,而HER2状态评估对于指导患者治疗策略至关重要。为了研究影响HER2判读一致性的因素,对1063例乳腺癌病例的组织芯片进行了3种不同的IHC方案检测,并开发了一种新型人工智能(AI)模型来标准化HER2染色图像。8位病理学家独立审查了总共5组组织芯片(Nordi QC、方案1、方案2、方案1 AI和方案2 AI)。Fleiss Kappa值和总体一致率用于衡量观察者间的一致性,逻辑回归分析变量对诊断准确性的影响。我们的结果表明,Nordi QC方案具有最高的观察者间一致性(Kappa 0.754)。基于AI的图像标准化显著提高了一致性,尤其是对于HER2低表达病例,使评分更符合Nordi QC标准。逻辑回归分析表明,染色方案和基于AI的图像标准化均显著影响诊断准确性(P <.001)。美国临床肿瘤学会/美国病理学家协会2018年二元标准显示出最高的HER2观察者间一致性(Kappa > 0.95)。与美国临床肿瘤学会/美国病理学家协会2023年标准相比,新提出的阴性、超低/低、阳性标准将HER2低表达和超低表达类别合并,显示出更高的可靠性和一致性,特别是在区分具有挑战性的HER2超低表达病例方面,在所有方案中这些病例的观察者间一致性极低(Kappa < 0.20)。总体而言,IHC染色方案和HER2分类标准的变异性显著影响病理学家之间的诊断一致性。整合用于图像标准化的AI模型并采用阴性、超低/低、阳性标准可能会提高诊断精度,并加强乳腺癌治疗中的临床决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验