Suppr超能文献

基于三重态神经网络协作的连续医学图像去噪。

Continual medical image denoising based on triplet neural networks collaboration.

机构信息

School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

出版信息

Comput Biol Med. 2024 Sep;179:108914. doi: 10.1016/j.compbiomed.2024.108914. Epub 2024 Jul 24.

Abstract

BACKGROUND

When multiple tasks are learned consecutively, the old model parameters may be overwritten by the new data, resulting in the phenomenon that the new task is learned and the old task is forgotten, which leads to catastrophic forgetting. Moreover, continual learning has no mature solution for image denoising tasks.

METHODS

Therefore, in order to solve the problem of catastrophic forgetting caused by learning multiple denoising tasks, we propose a Triplet Neural-networks Collaboration-continuity DeNosing (TNCDN) model. Use triplet neural networks to update each other cooperatively. The knowledge from two denoising networks that maintain continual learning capability is transferred to the main-denoising network. The main-denoising network has new knowledge and can consolidate old knowledge. A co-training mechanism is designed. The main-denoising network updates the other two denoising networks with different thresholds to maintain memory reinforcement capability and knowledge extension capability.

RESULTS

The experimental results show that our method effectively alleviates catastrophic forgetting. In GS, CT and ADNI datasets, compared with ANCL, the TNCDN(PromptIR) method reduced the average degree of forgetting on the evaluation index PSNR by 2.38 (39%) and RMSE by 1.63 (55%).

CONCLUSION

This study aims to solve the problem of catastrophic forgetting caused by learning multiple denoising tasks. Although the experimental results are promising, extending the basic denoising model to more data sets and tasks will enhance its application. Nevertheless, this study is a starting point, which can provide reference and support for the further development of continuous learning image denoising task.

摘要

背景

当连续学习多个任务时,旧的模型参数可能会被新数据覆盖,从而导致新任务被学习而旧任务被遗忘的现象,这就是灾难性遗忘。此外,连续学习对于图像去噪任务还没有成熟的解决方案。

方法

因此,为了解决学习多个去噪任务导致的灾难性遗忘问题,我们提出了一种三重神经网络协作连续性去噪(TNCDN)模型。使用三重神经网络相互协作更新。从两个具有持续学习能力的去噪网络中转移知识到主去噪网络。主去噪网络具有新知识,并且可以巩固旧知识。设计了一种协同训练机制。主去噪网络使用不同的阈值更新其他两个去噪网络,以保持记忆强化能力和知识扩展能力。

结果

实验结果表明,我们的方法有效地缓解了灾难性遗忘。在 GS、CT 和 ADNI 数据集上,与 ANCL 相比,TNCDN(PromptIR)方法在评价指标 PSNR 上的平均遗忘程度降低了 2.38(39%),在 RMSE 上降低了 1.63(55%)。

结论

本研究旨在解决学习多个去噪任务导致的灾难性遗忘问题。尽管实验结果很有前景,但将基本去噪模型扩展到更多的数据集和任务将增强其应用。然而,本研究是一个起点,可以为连续学习图像去噪任务的进一步发展提供参考和支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验