Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
Curr Biol. 2024 Aug 19;34(16):3644-3653.e3. doi: 10.1016/j.cub.2024.06.066. Epub 2024 Jul 24.
Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture. Additionally, halteres provide rhythmic input to the wing steering system that can be indirectly modulated by the visual system. The multifunctional capacity of the haltere is thought to depend on arrays of embedded mechanosensors called campaniform sensilla that are arranged in distinct groups on the haltere's dorsal and ventral surfaces. Although longstanding hypotheses suggest that each array provides different information relevant to the flight control circuitry, we know little about how the haltere campaniforms are functionally organized. Here, we use in vivo calcium imaging during tethered flight to obtain population-level recordings of the haltere sensory afferents in specific fields of sensilla. We find that haltere feedback from both dorsal fields is continuously active, modulated under closed-loop flight conditions, and recruited during saccades to help flies actively maneuver. We also find that the haltere's multifaceted role may arise from the steering muscles of the haltere itself, regulating haltere stroke amplitude to modulate campaniform activity. Taken together, our results underscore the crucial role of efferent control in regulating sensor activity and provide insight into how the sensory and motor systems of flies coevolved.
双翅目昆虫成员,即真正的蝇类,是最具机动性的飞行动物之一。这些空中能力部分归因于蝇类拥有平衡棒,这是一种从后翅进化而来的微小棒状结构,在飞行控制中起着至关重要的作用。平衡棒以充当生物陀螺仪而闻名,它可以快速检测到旋转扰动,并帮助蝇类保持稳定的飞行姿态。此外,平衡棒为翅膀转向系统提供了节律输入,该输入可以通过视觉系统间接调节。平衡棒的多功能性被认为取决于一系列称为鼓膜感觉器的嵌入式机械传感器,这些传感器在平衡棒的背侧和腹侧表面以不同的方式排列。尽管长期以来的假说表明,每个阵列提供的与飞行控制电路相关的信息不同,但我们对平衡棒鼓膜感觉器的功能组织方式知之甚少。在这里,我们在系留飞行过程中使用体内钙成像,获得了特定感觉器场中平衡棒感觉传入的群体水平记录。我们发现,来自背侧场的平衡棒反馈是连续活动的,在闭环飞行条件下被调制,并在扫视期间被招募,以帮助蝇类主动操纵。我们还发现,平衡棒的多方面作用可能来自于平衡棒本身的转向肌肉,调节平衡棒的冲程幅度以调节鼓膜的活动。总之,我们的研究结果强调了传出控制在调节传感器活动中的关键作用,并为蝇类的感觉和运动系统共同进化的方式提供了新的见解。