Dhawan Serene, Huang Zijin, Dickerson Bradley H
Princeton Neuroscience Institute, Princeton University, Princeton, NJ USA.
bioRxiv. 2025 May 30:2025.05.29.656834. doi: 10.1101/2025.05.29.656834.
Nervous systems rely on sensory feature maps, where the tuning of neighboring neurons for some ethologically-relevant parameter varies systematically, to control behavior. Such maps can be organized topographically or based on some computational principle. However, it is unclear how the central organization of a sensory system corresponds to the functional logic of the motor system. This problem is exemplified by insect flight, where sub-millisecond modifications in wing-steering muscle activity are necessary for stability and maneuverability. Although the muscles that control wing motion are anatomically and functionally stratified into distinct motor modules, comparatively little is known about the architecture of the sensory circuits that regulate their precise firing times. Here, we leverage an existing volume of an adult female VNC of the fruit fly to reconstruct the complete population of afferents in the haltere-nature's only biological "gyroscope"-and their synaptic partners. We morphometrically classify these neurons into distinct subtypes and design split-GAL4 lines that help us determine the peripheral locations from which each subtype originates. We find that each subtype, rather than originating from the same anatomical location, is comprised of multiple regions on the haltere. We then trace the flow of rapid mechanosensory feedback from the peripheral haltere receptors to the central motor circuits that control wing kinematics. Our work demonstrates how a sensory system's connectivity patterns construct a neural map that may facilitate rapid processing by the motor system.
神经系统依靠感觉特征图谱来控制行为,在这些图谱中,相邻神经元对某些与行为学相关参数的调谐会系统地变化。这样的图谱可以按地形组织,也可以基于某些计算原理组织。然而,尚不清楚感觉系统的中枢组织如何与运动系统的功能逻辑相对应。昆虫飞行就是这个问题的一个例证,其中翅膀转向肌肉活动的亚毫秒级变化对于稳定性和机动性是必要的。尽管控制翅膀运动的肌肉在解剖学和功能上被分层为不同的运动模块,但对于调节其精确放电时间的感觉回路的结构却知之甚少。在这里,我们利用现有的成年雌性果蝇腹神经索的体积来重建平衡棒(自然界唯一的生物“陀螺仪”)中的完整传入神经元群体及其突触伙伴。我们从形态计量学上将这些神经元分类为不同的亚型,并设计了分裂-GAL4品系,这有助于我们确定每个亚型起源的外周位置。我们发现每个亚型并非起源于相同的解剖位置,而是由平衡棒上的多个区域组成。然后,我们追踪从外周平衡棒感受器到控制翅膀运动学的中枢运动回路的快速机械感觉反馈流。我们的工作展示了感觉系统的连接模式如何构建一个神经图谱,这可能有助于运动系统进行快速处理。