Suppr超能文献

不切实际的数据增强提高了基于深度学习的多巴胺转运体 SPECT 分类对站点间和相机间变异性的鲁棒性。

Unrealistic Data Augmentation Improves the Robustness of Deep Learning-Based Classification of Dopamine Transporter SPECT Against Variability Between Sites and Between Cameras.

机构信息

Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

出版信息

J Nucl Med. 2024 Sep 3;65(9):1463-1466. doi: 10.2967/jnumed.124.267570.

Abstract

We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. A CNN was trained on a homogeneous dataset comprising 1,100 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)--(3-fluoropropyl)nortropane SPECT images using strongly unrealistic data augmentation based on gaussian blurring and additive noise. Strongly unrealistic data augmentation was compared with no augmentation and intensity-based nnU-Net augmentation on 2 independent datasets with lower ( = 645) and considerably higher ( = 640) spatial resolution. The CNN trained with strongly unrealistic augmentation achieved an overall accuracy of 0.989 (95% CI, 0.978-0.996) and 0.975 (95% CI, 0.960-0.986) in the independent test datasets, which was better than that without (0.960, 95% CI, 0.942-0.974; 0.953, 95% CI, 0.934-0.968) and with nnU-Net augmentation (0.972, 95% CI, 0.956-0.983; 0.950, 95% CI, 0.930-0.966) (all McNemar < 0.001). Strongly unrealistic data augmentation results in better generalization of CNN-based classification of I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)--(3-fluoropropyl)nortropane SPECT images to unseen acquisition settings. We hypothesize that this can be transferred to other nuclear imaging applications.

摘要

我们提出了强烈非现实的数据增强方法,以提高卷积神经网络 (CNN) 对多巴胺转运体 SPECT 自动分类的稳健性,以应对站点间和相机间的变异性。在一个同质数据集上,我们使用基于高斯模糊和加性噪声的强烈非现实数据增强,对一个包含 1100 个 I 标记的 2β-碳甲氧基-3β-(4-碘苯基)-(3-氟丙基)去甲托烷 SPECT 图像的 CNN 进行了训练。在两个独立的数据集上,与无增强和基于强度的 nnU-Net 增强进行了比较,这些数据集的空间分辨率较低(=645)和较高(=640)。在独立测试数据集中,使用强烈非现实增强训练的 CNN 实现了 0.989(95%置信区间,0.978-0.996)和 0.975(95%置信区间,0.960-0.986)的整体准确性,优于无增强(0.960,95%置信区间,0.942-0.974;0.953,95%置信区间,0.934-0.968)和 nnU-Net 增强(0.972,95%置信区间,0.956-0.983;0.950,95%置信区间,0.930-0.966)(所有 McNemar < 0.001)。强烈非现实的数据增强导致基于 CNN 的 I 标记 2β-碳甲氧基-3β-(4-碘苯基)-(3-氟丙基)去甲托烷 SPECT 图像分类的更好泛化,可应用于未见的采集设置。我们假设这可以转化为其他核成像应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验