Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
J Nucl Med. 2024 Sep 3;65(9):1463-1466. doi: 10.2967/jnumed.124.267570.
We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. A CNN was trained on a homogeneous dataset comprising 1,100 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)--(3-fluoropropyl)nortropane SPECT images using strongly unrealistic data augmentation based on gaussian blurring and additive noise. Strongly unrealistic data augmentation was compared with no augmentation and intensity-based nnU-Net augmentation on 2 independent datasets with lower ( = 645) and considerably higher ( = 640) spatial resolution. The CNN trained with strongly unrealistic augmentation achieved an overall accuracy of 0.989 (95% CI, 0.978-0.996) and 0.975 (95% CI, 0.960-0.986) in the independent test datasets, which was better than that without (0.960, 95% CI, 0.942-0.974; 0.953, 95% CI, 0.934-0.968) and with nnU-Net augmentation (0.972, 95% CI, 0.956-0.983; 0.950, 95% CI, 0.930-0.966) (all McNemar < 0.001). Strongly unrealistic data augmentation results in better generalization of CNN-based classification of I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)--(3-fluoropropyl)nortropane SPECT images to unseen acquisition settings. We hypothesize that this can be transferred to other nuclear imaging applications.
我们提出了强烈非现实的数据增强方法,以提高卷积神经网络 (CNN) 对多巴胺转运体 SPECT 自动分类的稳健性,以应对站点间和相机间的变异性。在一个同质数据集上,我们使用基于高斯模糊和加性噪声的强烈非现实数据增强,对一个包含 1100 个 I 标记的 2β-碳甲氧基-3β-(4-碘苯基)-(3-氟丙基)去甲托烷 SPECT 图像的 CNN 进行了训练。在两个独立的数据集上,与无增强和基于强度的 nnU-Net 增强进行了比较,这些数据集的空间分辨率较低(=645)和较高(=640)。在独立测试数据集中,使用强烈非现实增强训练的 CNN 实现了 0.989(95%置信区间,0.978-0.996)和 0.975(95%置信区间,0.960-0.986)的整体准确性,优于无增强(0.960,95%置信区间,0.942-0.974;0.953,95%置信区间,0.934-0.968)和 nnU-Net 增强(0.972,95%置信区间,0.956-0.983;0.950,95%置信区间,0.930-0.966)(所有 McNemar < 0.001)。强烈非现实的数据增强导致基于 CNN 的 I 标记 2β-碳甲氧基-3β-(4-碘苯基)-(3-氟丙基)去甲托烷 SPECT 图像分类的更好泛化,可应用于未见的采集设置。我们假设这可以转化为其他核成像应用。