Suppr超能文献

使用卷积神经网络对多巴胺转运体单光子发射计算机断层扫描中的纹状体亚区域进行全自动分类分析。

Fully automatic categorical analysis of striatal subregions in dopamine transporter SPECT using a convolutional neural network.

作者信息

Buddenkotte Thomas, Lange Catharina, Klutmann Susanne, Apostolova Ivayla, Buchert Ralph

机构信息

Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Department of Nuclear Medicine, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Ann Nucl Med. 2025 Jun;39(6):618-630. doi: 10.1007/s12149-025-02038-3. Epub 2025 Mar 16.

Abstract

OBJECTIVE

To provide fully automatic scanner-independent 5-level categorization of the [I]FP-CIT uptake in striatal subregions in dopamine transporter SPECT.

METHODS

A total of 3500 [I]FP-CIT SPECT scans from two in house (n = 1740, n = 640) and two external (n = 645, n = 475) datasets were used for this study. A convolutional neural network (CNN) was trained for the categorization of the [I]FP-CIT uptake in unilateral caudate and putamen in both hemispheres according to 5 levels: normal, borderline, moderate reduction, strong reduction, almost missing. Reference standard labels for the network training were created automatically by fitting a Gaussian mixture model to histograms of the specific [I]FP-CIT binding ratio, separately for caudate and putamen and separately for each dataset. The CNN was trained on a mixed-scanner subsample (n = 1957) and tested on one independent identically distributed (IID, n = 1068) and one out-of-distribution (OOD, n = 475) test dataset.

RESULTS

The accuracy of the CNN for the 5-level prediction of the [I]FP-CIT uptake in caudate/putamen was 80.1/78.0% in the IID test dataset and 78.1/76.5% in the OOD test dataset. All 4 regional 5-level predictions were correct in 54.3/52.6% of the cases in the IID/OOD test dataset. A global binary score automatically derived from the regional 5-scores achieved 97.4/96.2% accuracy for automatic classification of the scans as normal or reduced relative to visual expert read as reference standard.

CONCLUSIONS

Automatic scanner-independent 5-level categorization of the [I]FP-CIT uptake in striatal subregions by a CNN model is feasible with clinically useful accuracy.

摘要

目的

在多巴胺转运体单光子发射计算机断层扫描(SPECT)中,对纹状体亚区域的[I]FP-CIT摄取进行与扫描仪无关的全自动5级分类。

方法

本研究使用了来自两个内部数据集(n = 1740,n = 640)和两个外部数据集(n = 645,n = 475)的总共3500例[I]FP-CIT SPECT扫描。训练了一个卷积神经网络(CNN),用于根据5个级别对双侧半球的单侧尾状核和壳核中的[I]FP-CIT摄取进行分类:正常、临界、中度降低、显著降低、几乎缺失。通过将高斯混合模型拟合到特定[I]FP-CIT结合率的直方图上,分别针对尾状核和壳核以及每个数据集自动创建用于网络训练的参考标准标签。CNN在一个混合扫描仪子样本(n = 1957)上进行训练,并在一个独立同分布(IID,n = 1068)和一个分布外(OOD,n = 475)测试数据集上进行测试。

结果

在IID测试数据集中,CNN对尾状核/壳核中[I]FP-CIT摄取进行5级预测的准确率分别为80.1%/78.0%,在OOD测试数据集中为78.1%/76.5%。在IID/OOD测试数据集中,所有4个区域的5级预测在54.3%/52.6%的病例中是正确的。从区域5分自动得出的全局二元评分在将扫描自动分类为正常或相对于视觉专家解读作为参考标准的降低方面,准确率达到了97.4%/96.2%。

结论

通过CNN模型对纹状体亚区域的[I]FP-CIT摄取进行与扫描仪无关的全自动5级分类是可行的,且具有临床实用的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddee/12095456/99b77dcdeeac/12149_2025_2038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验