Suppr超能文献

最优模型平均法在部分线性模型中缺失响应变量和易出错协变量的应用。

Optimal model averaging for partially linear models with missing response variables and error-prone covariates.

机构信息

School of Data Sciences, Zhejiang University of Finance & Economics, Hangzhou, China.

School of Computer and Computing Science, Hangzhou City University, Hangzhou, China.

出版信息

Stat Med. 2024 Sep 30;43(22):4328-4348. doi: 10.1002/sim.10176. Epub 2024 Jul 25.

Abstract

We consider the problem of optimal model averaging for partially linear models when the responses are missing at random and some covariates are measured with error. A novel weight choice criterion based on the Mallows-type criterion is proposed for the weight vector to be used in the model averaging. The resulting model averaging estimator for the partially linear models is shown to be asymptotically optimal under some regularity conditions in terms of achieving the smallest possible squared loss. In addition, the existence of a local minimizing weight vector and its convergence rate to the risk-based optimal weight vector are established. Simulation studies suggest that the proposed model averaging method generally outperforms existing methods. As an illustration, the proposed method is applied to analyze an HIV-CD4 dataset.

摘要

我们考虑了当响应随机缺失且某些协变量存在测量误差时,部分线性模型的最优模型平均问题。针对要用于模型平均的权重向量,提出了一种基于 Mallows 型准则的新的权重选择准则。在一些正则条件下,得到的部分线性模型的模型平均估计量在实现最小二乘损失方面是渐近最优的。此外,还建立了局部最小权重向量的存在性及其与基于风险的最优权重向量的收敛速度。模拟研究表明,所提出的模型平均方法通常优于现有的方法。作为说明,我们将该方法应用于分析 HIV-CD4 数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验