现代方法评估临床试验和观察数据中治疗效果的异质性。

Modern approaches for evaluating treatment effect heterogeneity from clinical trials and observational data.

机构信息

Advanced Analytics and Access Capabilities, Eli Lilly and Company, Indianapolis, Indiana, USA.

Statistical Innovation, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

出版信息

Stat Med. 2024 Sep 30;43(22):4388-4436. doi: 10.1002/sim.10167. Epub 2024 Jul 25.

Abstract

In this paper, we review recent advances in statistical methods for the evaluation of the heterogeneity of treatment effects (HTE), including subgroup identification and estimation of individualized treatment regimens, from randomized clinical trials and observational studies. We identify several types of approaches using the features introduced in Lipkovich et al (Stat Med 2017;36: 136-196) that distinguish the recommended principled methods from basic methods for HTE evaluation that typically rely on rules of thumb and general guidelines (the methods are often referred to as common practices). We discuss the advantages and disadvantages of various principled methods as well as common measures for evaluating their performance. We use simulated data and a case study based on a historical clinical trial to illustrate several new approaches to HTE evaluation.

摘要

在本文中,我们回顾了最近在评估治疗效果异质性(HTE)的统计方法方面的进展,包括从随机临床试验和观察性研究中识别亚组和估计个体化治疗方案。我们根据 Lipkovich 等人(Stat Med 2017;36: 136-196)中介绍的特征,确定了几种使用方法,这些方法将推荐的有原则的方法与 HTE 评估的基本方法区分开来,基本方法通常依赖于经验法则和一般准则(这些方法通常被称为常见做法)。我们讨论了各种有原则方法的优缺点,以及评估其性能的常用措施。我们使用模拟数据和基于历史临床试验的案例研究来说明 HTE 评估的几种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索