Suppr超能文献

纳米抗体生成技术的进展:传统方法、计算方法和机器学习方法的整合。

Advancements in nanobody generation: Integrating conventional, in silico, and machine learning approaches.

机构信息

Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India.

GITAM School of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, India.

出版信息

Biotechnol Bioeng. 2024 Nov;121(11):3375-3388. doi: 10.1002/bit.28816. Epub 2024 Jul 25.

Abstract

Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.

摘要

纳米抗体来源于骆驼科动物和鲨鱼,具有结构紧凑、可变区单一的重链抗体的特点,在生物医学领域具有广泛的应用潜力。本文综述了纳米抗体的生成方法,包括噬菌体、酵母或细菌展示技术,以及计算方法学。实验与计算方法的结合有助于深入理解纳米抗体的结构与功能。未来的发展趋势包括利用下一代测序、机器学习和人工智能进行高效的候选物筛选和预测建模。传统方法与计算方法的融合将推动精准医学等生物医学应用领域的革命性进展,例如靶向药物输送和诊断。这些技术的应用将加速纳米抗体的开发,为精准医学和生物医学创新铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验