Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India.
GITAM School of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, India.
Biotechnol Bioeng. 2024 Nov;121(11):3375-3388. doi: 10.1002/bit.28816. Epub 2024 Jul 25.
Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.
纳米抗体来源于骆驼科动物和鲨鱼,具有结构紧凑、可变区单一的重链抗体的特点,在生物医学领域具有广泛的应用潜力。本文综述了纳米抗体的生成方法,包括噬菌体、酵母或细菌展示技术,以及计算方法学。实验与计算方法的结合有助于深入理解纳米抗体的结构与功能。未来的发展趋势包括利用下一代测序、机器学习和人工智能进行高效的候选物筛选和预测建模。传统方法与计算方法的融合将推动精准医学等生物医学应用领域的革命性进展,例如靶向药物输送和诊断。这些技术的应用将加速纳米抗体的开发,为精准医学和生物医学创新铺平道路。