Suppr超能文献

动力学控制合成具有暴露{111}面的低应变无序微纳高压尖晶石阴极。

Kinetically controlled synthesis of low-strain disordered micro-nano high voltage spinel cathodes with exposed {111} facets.

作者信息

Li Zhi-Qi, Liu Yi-Feng, Liu Han-Xiao, Zhu Yan-Fang, Wang Jingqiang, Zhang Mengke, Qiu Lang, Guo Xiao-Dong, Chou Shu-Lei, Xiao Yao

机构信息

College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China

Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou 325035 P. R. China.

出版信息

Chem Sci. 2024 Jun 13;15(29):11302-11310. doi: 10.1039/d4sc02754j. eCollection 2024 Jul 24.

Abstract

High-voltage LiNiMnO (LNMO) is one of the most promising cathode candidates for rechargeable lithium-ion batteries (LIBs) but suffers from deteriorated cycling stability due to severe interfacial side reactions and manganese dissolution. Herein, a micro-nano porous spherical LNMO cathode was designed for high-performance LIBs. The disordered structure and the preferred exposure of the {111} facets can be controlled by the release of lattice oxygen in the high-temperature calcination process. The unique configuration of this material could enhance the structural stability and play a crucial role in inhibiting manganese dissolution, promoting the rapid transport of Li, and reducing the volume strain during the charge/discharge process. The designed cathode exhibits a remarkable discharge capacity of 136.7 mA h g at 0.5C, corresponding to an energy density of up to 636.4 W h kg, unprecedented cycling stability (capacity retention of 90.6% after 500 cycles) and superior rate capability (78.9% of initial capacity at 10C). The structurally controllable preparation strategy demonstrated in this work provides new insights into the structural design of cathode materials for LIBs.

摘要

高压LiNiMnO(LNMO)是最有前途的可充电锂离子电池(LIB)正极候选材料之一,但由于严重的界面副反应和锰溶解,其循环稳定性较差。在此,设计了一种用于高性能LIB的微纳多孔球形LNMO正极。通过高温煅烧过程中晶格氧的释放,可以控制无序结构和{111}晶面的优先暴露。这种材料的独特结构可以增强结构稳定性,并在抑制锰溶解、促进锂的快速传输以及减少充放电过程中的体积应变方面发挥关键作用。所设计的正极在0.5C下表现出136.7 mA h g的显著放电容量,对应高达636.4 W h kg的能量密度、前所未有的循环稳定性(500次循环后容量保持率为90.6%)和优异的倍率性能(在10C下为初始容量的78.9%)。这项工作中展示的结构可控制备策略为LIB正极材料的结构设计提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b55a/11268507/3aaa3df89c75/d4sc02754j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验