Su Yu, Johannessen Bernt, Zhang Shilin, Chen Ziru, Gu Qinfen, Li Guanjie, Yan Hong, Li Jia-Yang, Hu Hai-Yan, Zhu Yan-Fang, Xu Sailong, Liu Huakun, Dou Shixue, Xiao Yao
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
Adv Mater. 2023 Oct;35(40):e2305149. doi: 10.1002/adma.202305149. Epub 2023 Aug 22.
Optimizing charge transfer and alleviating volume expansion in electrode materials are critical to maximize electrochemical performance for energy-storage systems. Herein, an atomically thin soft-rigid Co S @MoS core-shell heterostructure with dual cation vacancies at the atomic interface is constructed as a promising anode for high-performance sodium-ion batteries. The dual cation vacancies involving V and V in the heterostructure and the soft MoS shell afford ionic pathways for rapid charge transfer, as well as the rigid Co S core acting as the dominant active component and resisting structural deformation during charge-discharge. Electrochemical testing and theoretical calculations demonstrate both excellent Na -transfer kinetics and pseudocapacitive behavior. Consequently, the soft-rigid heterostructure delivers extraordinary sodium-storage performance (389.7 mA h g after 500 cycles at 5.0 A g ), superior to those of the single-phase counterparts: the assembled Na V (PO ) ||d-Co S @MoS /S-Gr full cell achieves an energy density of 235.5 Wh kg at 0.5 C. This finding opens up a unique strategy of soft-rigid heterostructure and broadens the horizons of material design in energy storage and conversion.
优化电极材料中的电荷转移并缓解体积膨胀对于最大化储能系统的电化学性能至关重要。在此,构建了一种在原子界面处具有双阳离子空位的原子级薄软-硬CoS@MoS核壳异质结构,作为高性能钠离子电池的有前景的负极。异质结构中涉及V和V的双阳离子空位以及软质MoS壳提供了快速电荷转移的离子通道,同时硬质CoS核作为主要活性成分并在充放电过程中抵抗结构变形。电化学测试和理论计算表明其具有优异的Na转移动力学和赝电容行为。因此,这种软-硬异质结构展现出非凡的储钠性能(在5.0 A g下500次循环后为389.7 mA h g),优于单相同类材料:组装的NaV(PO)||d-CoS@MoS/S-Gr全电池在0.5 C下实现了235.5 Wh kg的能量密度。这一发现开辟了一种独特的软-硬异质结构策略,并拓宽了储能和转换领域材料设计的视野。