Suppr超能文献

使用知识约束广义线性模型进行放疗毒性预测。

Radiotherapy toxicity prediction using knowledge-constrained generalized linear model.

作者信息

Hu Jiuyun, Fatyga Mirek, Liu Wei, Schild Steven E, Wong William W, Vora Sujay A, Li Jing

机构信息

School of Computing & Augmented Intelligence, Arizona State University, Tempe, AZ, USA.

Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA.

出版信息

IISE Trans Healthc Syst Eng. 2024;14(2):130-140. doi: 10.1080/24725579.2023.2227199. Epub 2023 Jul 7.

Abstract

Radiation therapy (RT) is a frontline approach to treating cancer. While the target of radiation dose delivery is the tumor, there is an inevitable spill of dose to nearby normal organs causing complications. This phenomenon is known as radiotherapy toxicity. To predict the outcome of the toxicity, statistical models can be built based on dosimetric variables received by the normal organ at risk (OAR), known as Normal Tissue Complication Probability (NTCP) models. To tackle the challenge of the high dimensionality of dosimetric variables and limited clinical sample sizes, statistical models with variable selection techniques are viable choices. However, existing variable selection techniques are data-driven and do not integrate medical domain knowledge into the model formulation. We propose a knowledge-constrained generalized linear model (KC-GLM). KC-GLM includes a new mathematical formulation to translate three pieces of domain knowledge into non-negativity, monotonicity, and adjacent similarity constraints on the model coefficients. We further propose an equivalent transformation of the KC-GLM formulation, which makes it possible to solve the model coefficients using existing optimization solvers. Furthermore, we compare KC-GLM and several well-known variable selection techniques a simulation study and on two real datasets of prostate cancer and lung cancer, respectively. These experiments show that KC-GLM selects variables with better interpretability, avoids producing counter-intuitive and misleading results, and has better prediction accuracy.

摘要

放射治疗(RT)是治疗癌症的一线方法。虽然辐射剂量传递的目标是肿瘤,但不可避免地会有剂量泄漏到附近的正常器官,从而引发并发症。这种现象被称为放射治疗毒性。为了预测毒性结果,可以基于处于危险中的正常器官(OAR)所接收的剂量学变量建立统计模型,即正常组织并发症概率(NTCP)模型。为应对剂量学变量的高维度和临床样本量有限的挑战,采用变量选择技术的统计模型是可行的选择。然而,现有的变量选择技术是数据驱动的,没有将医学领域知识纳入模型构建中。我们提出了一种知识约束广义线性模型(KC - GLM)。KC - GLM包含一种新的数学公式,可将三条领域知识转化为对模型系数的非负性、单调性和相邻相似性约束。我们进一步提出了KC - GLM公式的等效变换,这使得可以使用现有的优化求解器来求解模型系数。此外,我们分别在一项模拟研究以及前列腺癌和肺癌的两个真实数据集上,将KC - GLM与几种著名的变量选择技术进行了比较。这些实验表明,KC - GLM选择的变量具有更好的可解释性,避免产生违反直觉和误导性的结果,并且具有更好的预测准确性。

相似文献

1
Radiotherapy toxicity prediction using knowledge-constrained generalized linear model.使用知识约束广义线性模型进行放疗毒性预测。
IISE Trans Healthc Syst Eng. 2024;14(2):130-140. doi: 10.1080/24725579.2023.2227199. Epub 2023 Jul 7.

本文引用的文献

1
Cross-validation approaches for penalized Cox regression.惩罚 Cox 回归的交叉验证方法。
Stat Methods Med Res. 2024 Apr;33(4):702-715. doi: 10.1177/09622802241233770. Epub 2024 Mar 6.
3
Detecting spatial susceptibility to cardiac toxicity of radiation therapy for lung cancer.检测肺癌放射治疗心脏毒性的空间易感性。
IISE Trans Healthc Syst Eng. 2020;10(4):243-250. doi: 10.1080/24725579.2020.1795012. Epub 2020 Jul 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验