Suppr超能文献

在广义部分验证性因子分析框架内适配和扩展各种特效模型

Accommodating and Extending Various Models for Special Effects Within the Generalized Partially Confirmatory Factor Analysis Framework.

作者信息

Zhang Yifan, Chen Jinsong

机构信息

The University of Hong Kong, Hong Kong.

出版信息

Appl Psychol Meas. 2024 Jul;48(4-5):208-229. doi: 10.1177/01466216241261704. Epub 2024 Jun 12.

Abstract

Special measurement effects including the method and testlet effects are common issues in educational and psychological measurement. They are typically covered by various bifactor models or models for the multiple traits multiple methods (MTMM) structure for continuous data and by various testlet effect models for categorical data. However, existing models have some limitations in accommodating different type of effects. With slight modification, the generalized partially confirmatory factor analysis (GPCFA) framework can flexibly accommodate special effects for continuous and categorical cases with added benefits. Various bifactor, MTMM and testlet effect models can be linked to different variants of the revised GPCFA model. Compared to existing approaches, GPCFA offers multidimensionality for both the general and effect factors (or traits) and can address local dependence, mixed-type formats, and missingness jointly. Moreover, the partially confirmatory approach allows for regularization of the loading patterns, resulting in a simpler structure in both the general and special parts. We also provide a subroutine to compute the equivalent effect size. Simulation studies and real-data examples are used to demonstrate the performance and usefulness of the proposed approach under different situations.

摘要

包括方法效应和测验题目组效应在内的特殊测量效应是教育和心理测量中的常见问题。对于连续数据,它们通常由各种双因素模型或多特质多方法(MTMM)结构模型涵盖,对于分类数据,则由各种测验题目组效应模型涵盖。然而,现有模型在适应不同类型的效应方面存在一些局限性。通过稍加修改,广义部分验证性因子分析(GPCFA)框架可以灵活地适应连续和分类情况下的特殊效应,并具有额外的优势。各种双因素、MTMM和测验题目组效应模型可以与修订后的GPCFA模型的不同变体相联系。与现有方法相比,GPCFA为一般因素和效应因素(或特质)都提供了多维性,并且可以共同解决局部依赖性、混合型格式和缺失值问题。此外,部分验证性方法允许对载荷模式进行正则化,从而在一般部分和特殊部分都产生更简单的结构。我们还提供了一个计算等效效应大小的子程序。通过模拟研究和实际数据示例来证明所提出方法在不同情况下的性能和实用性。

相似文献

1
Accommodating and Extending Various Models for Special Effects Within the Generalized Partially Confirmatory Factor Analysis Framework.
Appl Psychol Meas. 2024 Jul;48(4-5):208-229. doi: 10.1177/01466216241261704. Epub 2024 Jun 12.
3
Community views on mass drug administration for soil-transmitted helminths: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2025 Jun 20;6:CD015794. doi: 10.1002/14651858.CD015794.pub2.
4
Carbon dioxide detection for diagnosis of inadvertent respiratory tract placement of enterogastric tubes in children.
Cochrane Database Syst Rev. 2025 Feb 19;2(2):CD011196. doi: 10.1002/14651858.CD011196.pub2.
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
NIH Consensus Statement on Management of Hepatitis C: 2002.
NIH Consens State Sci Statements. 2002;19(3):1-46.
8
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
9
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
10
The measurement and monitoring of surgical adverse events.
Health Technol Assess. 2001;5(22):1-194. doi: 10.3310/hta5220.

本文引用的文献

1
A Generalized Partially Confirmatory Factor Analysis Framework with Mixed Bayesian Lasso Methods.
Multivariate Behav Res. 2022 Nov-Dec;57(6):879-894. doi: 10.1080/00273171.2021.1925520. Epub 2021 May 18.
2
Do method effects generalize across traits (and what if they don't)?
J Pers. 2021 May;89(3):382-401. doi: 10.1111/jopy.12625. Epub 2021 Mar 5.
3
A Partially Confirmatory Approach to the Multidimensional Item Response Theory with the Bayesian Lasso.
Psychometrika. 2020 Sep;85(3):738-774. doi: 10.1007/s11336-020-09724-3. Epub 2020 Sep 26.
4
A partially confirmatory approach to scale development with the Bayesian Lasso.
Psychol Methods. 2021 Apr;26(2):210-235. doi: 10.1037/met0000293. Epub 2020 Jul 13.
5
Recovering bifactor models: A comparison of seven methods.
Psychol Methods. 2020 Apr;25(2):143-156. doi: 10.1037/met0000227. Epub 2019 Jul 25.
6
A Multilevel Bifactor Approach to Construct Validation of Mixed-Format Scales.
Educ Psychol Meas. 2018 Apr;78(2):253-271. doi: 10.1177/0013164417690858. Epub 2017 Oct 11.
7
A Comparison of Bifactor and Second-Order Models of Quality of Life.
Multivariate Behav Res. 2006 Jun 1;41(2):189-225. doi: 10.1207/s15327906mbr4102_5.
9
Invited Paper: The Rediscovery of Bifactor Measurement Models.
Multivariate Behav Res. 2012 Sep 1;47(5):667-696. doi: 10.1080/00273171.2012.715555.
10
Exploratory Bi-factor Analysis.
Psychometrika. 2011 Oct;76(4):537-49. doi: 10.1007/s11336-011-9218-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验